Explainability for Vision Transformers (in PyTorch)

Overview

Explainability for Vision Transformers (in PyTorch)

This repository implements methods for explainability in Vision Transformers.

See also https://jacobgil.github.io/deeplearning/vision-transformer-explainability

Currently implemented:

  • Attention Rollout.

  • Gradient Attention Rollout for class specific explainability. This is our attempt to further build upon and improve Attention Rollout.

  • TBD Attention flow is work in progress.

Includes some tweaks and tricks to get it working:

  • Different Attention Head fusion methods,
  • Removing the lowest attentions.

Usage

  • From code
from vit_grad_rollout import VITAttentionGradRollout

model = torch.hub.load('facebookresearch/deit:main', 
'deit_tiny_patch16_224', pretrained=True)
grad_rollout = VITAttentionGradRollout(model, discard_ratio=0.9, head_fusion='max')
mask = grad_rollout(input_tensor, category_index=243)
  • From the command line:
python vit_explain.py --image_path  --head_fusion  --discard_ratio  --category_index 

If category_index isn't specified, Attention Rollout will be used, otherwise Gradient Attention Rollout will be used.

Notice that by default, this uses the 'Tiny' model from Training data-efficient image transformers & distillation through attention hosted on torch hub.

Where did the Transformer pay attention to in this image?

Image Vanilla Attention Rollout With discard_ratio+max fusion

Gradient Attention Rollout for class specific explainability

The Attention that flows in the transformer passes along information belonging to different classes. Gradient roll out lets us see what locations the network paid attention too, but it tells us nothing about if it ended up using those locations for the final classification.

We can multiply the attention with the gradient of the target class output, and take the average among the attention heads (while masking out negative attentions) to keep only attention that contributes to the target category (or categories).

Where does the Transformer see a Dog (category 243), and a Cat (category 282)?

Where does the Transformer see a Musket dog (category 161) and a Parrot (category 87):

Tricks and Tweaks to get this working

Filtering the lowest attentions in every layer

--discard_ratio

Removes noise by keeping the strongest attentions.

Results for dIfferent values:

Different Attention Head Fusions

The Attention Rollout method suggests taking the average attention accross the attention heads,

but emperically it looks like taking the Minimum value, Or the Maximum value combined with --discard_ratio, works better.

--head_fusion

Image Mean Fusion Min Fusion

References

Requirements

pip install timm

Owner
Jacob Gildenblat
Machine learning / Computer Vision developer.
Jacob Gildenblat
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022