Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

Overview

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu

https://openreview.net/forum?id=RLtqs6pzj1-

Abstract: The success of deep ensembles on improving predictive performance, uncertainty, and out-of-distribution robustness has been extensively demonstrated in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at test lead to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs compared to a single dense model. This seemingly counter-intuitive outcome is due to the ultra training efficiency of dynamic sparse training. FreeTickets improves over the dense baseline in the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, and training/inference efficiency. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 training FLOPs required by the latter.

This code base is created by Shiwei Liu [email protected] during his Ph.D. at Eindhoven University of Technology.

Requirements

Python 3.6, PyTorch v1.5.1, and CUDA v10.2.

How to Run Experiments

CIFAR-10/100 Experiments

To train Wide ResNet28-10 on CIFAR10/100 with DST ensemble at sparsity 0.8:

python main_DST.py --sparse --model wrn-28-10 --data cifar10 --seed 17 --sparse-init ERK \
--update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.8 \
--growth gradient --death magnitude --redistribution none --epochs 250 --density 0.2

To train Wide ResNet28-10 on CIFAR10/100 with EDST ensemble at sparsity 0.8:

python3 main_EDST.py --sparse --model wrn-28-10 --data cifar10 --nolrsche \
--decay-schedule constant --seed 17 --epochs-explo 150 --model-num 3 --sparse-init ERK \
--update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.8 \
--growth gradient --death magnitude --redistribution none --epochs 450 --density 0.2

[Training module] The training module is controlled by the following arguments:

  • --epochs-explo - An integer that controls the training epochs of the exploration phase.
  • --model-num - An integer, the number free tickets to produce.
  • --large-death-rate - A float, the ratio of parameters to explore for each refine phase.
  • --density - An float, the density (1-sparsity) level for each free ticket.

To train Wide ResNet28-10 on CIFAR10/100 with PF (prung and finetuning) ensemble at sparsity 0.8:

First, we need train a dense model with:

python3 main_individual.py  --model wrn-28-10 --data cifar10 --decay-schedule cosine --seed 18 \
--sparse-init ERK --update-frequency 1000 --batch-size 128 --death-rate 0.5 --large-death-rate 0.5 \
--growth gradient --death magnitude --redistribution none --epochs 250 --density 0.2

Then, perform pruning and finetuning with:

pretrain='results/wrn-28-10/cifar10/individual/dense/18.pt'
python3 main_PF.py --sparse --model wrn-28-10 --resume --pretrain $pretrain --lr 0.001 \
--fix --data cifar10 --nolrsche --decay-schedule constant --seed 18 
--epochs-fs 150 --model-num 3 --sparse-init pruning --update-frequency 1000 --batch-size 128 \
--death-rate 0.5 --large-death-rate 0.8 --growth gradient --death magnitude \
--redistribution none --epochs $epoch --density 0.2

After finish the training of various ensemble methods, run the following commands for test ensemble:

resume=results/wrn-28-10/cifar10/density_0.2/EDST/M=3/
python ensemble_freetickets.py --mode predict --resume $resume --dataset cifar10 --model wrn-28-10 \
--seed 18 --test-batch-size 128
  • --resume - An folder path that contains the all the free tickets obtained during training.
  • --mode - An str that control the evaluation mode, including: predict, disagreement, calibration, KD, and tsne.

ImageNet Experiments

cd ImageNet
python $1multiproc.py --nproc_per_node 2 $1main.py --sparse_init ERK --multiplier 1 --growth gradient --seed 17 --master_port 4545 -j5 -p 500 --arch resnet50 -c fanin --update_frequency 4000 --label-smoothing 0.1 -b 64 --lr 0.1 --warmup 5 --epochs 310 --density 0.2 $2 ../data/

Citation

if you find this repo is helpful, please cite

@inproceedings{
liu2022deep,
title={Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity},
author={Shiwei Liu and Tianlong Chen and Zahra Atashgahi and Xiaohan Chen and Ghada Sokar and Elena Mocanu and Mykola Pechenizkiy and Zhangyang Wang and Decebal Constantin Mocanu},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=RLtqs6pzj1-}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
3 Apr 20, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022