PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

Related tags

Deep LearningSMODICE
Overview

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

This is the official PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching.

SMODICE Demos

Tabular Experiments

  1. Offline Imitation Learning from Mismatched Experts
python smodice_tabular/run_tabular_mismatched.py
  1. Offline Imitation Learning from Examples
python smodice_tabular/run_tabular_example.py

Deep IL Experiments

Setup

  1. Create conda environment and activate it:
    conda env create -f environment.yml
    conda activate smodice
    pip install --upgrade numpy
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    git clone https://github.com/rail-berkeley/d4rl
    cd d4rl
    pip install -e .
    
    

Offline IL from Observations

  1. Run the following command with variable ENV set to any of hopper, walker2d, halfcheetah, ant, kitchen.
python run_oil_observations.py --env_name $ENV
  1. For the AntMaze environment, first generate the random dataset:
cd envs
python generate_antmaze_random.py --noise

Then, run

python run_oil_antmaze.py

Offline IL from Mismatched Experts

  1. For halfcheetah and ant, run
python run_oil_observations.py --env_name halfcheetah --dataset 0.5 --mismatch True

and

python run_oil_observations.py --env_name ant --dataset disabled --mismatch True

respectively. 2. For AntMaze, run

python run_oil_antmaze.py --mismatch True

Offline IL from Examples

  1. For the PointMass-4Direction task, run
python run_oil_examples_pointmass.py
  1. For the AntMaze task, run
python run_oil_antmaze.py --mismatch False --example True
  1. For the Franka Kitchen based tasks, run
python run_oil_examples_kitchen.py --dataset $DATASET

where DATASET can be one of microwave, kettle.

Baselines

For any task, the BC baseline can be run by appending --disc_type bc to the above commands.

For RCE-TD3-BC and ORIL baselines, on the appropriate tasks, append --algo_type $ALGO where ALGO can be one of rce, oril.

Citation

If you find this repository useful for your research, please cite

@article{ma2022smodice,
      title={SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching}, 
      author={Yecheng Jason Ma and Andrew Shen and Dinesh Jayaraman and Osbert Bastani},
      year={2022},
      url={https://arxiv.org/abs/2202.02433}
}

Contact

If you have any questions regarding the code or paper, feel free to contact me at [email protected].

Acknowledgment

This codebase is partially adapted from optidice, rce, relay-policy-learning, and d4rl ; We thank the authors and contributors for open-sourcing their code.

Owner
Jason Ma
Jason Ma
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022