Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

Overview

IMDB Success Predictor

Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine tuning a pre trained DistilBERT Transformer using Transfer Learning and then saving and reusing the saved model for further use.

Stack

  • DistilBERT Transformer
  • Tensorflow
  • Numpy and Pandas
  • Selenium, BeautifulSoup4 and requests

Metrics

  • Accuracy achieved: 81.3492%
  • ROC_AUC_Score achieved: 0.7217

Installation

1) Ensure Python and Jupyter Notebook are installed. Optionally Conda environment can also be used.

  1. Install the required modules using
pip install -r requirements.txt 
or conda install -r requirements.txt
or !pip install -r requirements.txt for Google Colab.
  1. Selenium requires browser specific drivers. Guides for Chrome and Firefox are mentioned below. Alternatively,this step is optional if the notebook is run on Google Colab.
    Chrome: https://chromedriver.chromium.org/getting-started
    Firefox: https://www.lambdatest.com/blog/selenium-firefox-driver-tutorial/

Training

1)(Optional) Run the IMDB Web scraper . This generates the already provided csv file and imdb_movies pickle file.

  1. Run the IMDB Web scraper on an environment which has GPU acceleration. Here it is used with Google Colab where Nvidia Tesla T4 or Nvidia Tesla K80 are allocated.
    Training Time: Roughly 20-25 mins
    Epochs: 10
    Training Batch Size: 8
    Max length of each Sentence: 512 
    A Movie_prediction_model directory is created with config.json file(provided) and a tf_model.h5 (not provided due to space constraints).

Usage

1) Ensure the model has been created inside Movie_prediction_model directory.

  1. Run the python file using python DistilBERT_Movie_Classifier.py

  2. Enter the description of the movie or TV show you want to predict for. An output will be generated with the binary prediction of success based of IMDB Ratings.

Owner
Gautam Diwan
Gautam Diwan
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023