CS50's Introduction to Artificial Intelligence Test Scripts

Overview

CS50's Introduction to Artificial Intelligence Test Scripts

🤷‍♂️ What's this? 🤷‍♀️

This repository contains Python scripts to automate tests for most of the CS50’s Introduction to Artificial Intelligence with Python projects.

It does not contain any project solution/spoiler, as per the course's Academic Honesty policy.

Disclaimer

This is a student-initiated project. Passing these test cases does not guarantee that you will receive a full grade from the official CS50 AI's teaching team.

📖 Table of Contents

Lecture Concept Project Test Script Description
Search Breadth First Search Degrees degrees_test.py Run test cases given by problem description and this discussion
Search Minimax Tic-Tac-Toe tictactoe_test.py Let your AI play against itself for 10 rounds
Knowledge Model Checking Knights puzzle_test.py Check the correctness of the 4 puzzle results
Knowledge Knowledge Engineering Minesweeper minesweeper_test.py Check if your AI has ≈90% win rate over 1000 simulations
Uncertainty Bayesian Networks Heredity heredity_test.py Run test cases given by problem description and this discussion
Uncertainty Markov Models PageRank pagerank_test.py Compare the output of the 2 implemented functions
Optimization Constraint Satisfaction Crossword generate_test.py Generate crosswords using all 9 different structure + words combination and a special test case from this discussion
Learning Nearest-Neighbor Classification Shopping shopping_test.py Check the information is parsed correctly and result is within a reasonable range
Learning Reinforcement Learning Nim nim_test.py Check if the AI which moves second has a 100% win rate

🛠️ How to Run Tests

Guide

  1. Make sure you have Python3 installed in your machine. Anything above Python 3.4+ should work.
  2. Install pytest by running pip install pytest in a terminal. More information about pip here.
  3. Make a copy of the test file and paste it in the same folder as the project that you want to test.

    For example, if you want to test your code for degrees.py, make a copy of degrees_test.py in the same folder as your degrees.py and other files that came along with the project, like util.py, large/ and small/.

  4. Navigate to the project folder and run pytest or pytest _test.py in a terminal.

    For example, navigate to degrees/ and run pytest or pytest degrees_test.py.

Example

example

🚩 Useful pytest Flags

  • Run pytest -s to show print statements in the console
  • Run pytest -vv for verbose mode
  • Combine both flags pytest -s -vv for extra verbose mode
  • Run pytest --durations=n to see the n slowest execution time
  • Install pytest-repeat with pip and then run pytest --count n to repeat the test for n times

💻 My Setup

Each test should take less than 30 seconds, depending on Python's I/O and your code efficiency.

  • Windows 10 Home Build 19042
  • Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
  • Python 3.9.5 64-bit
  • Visual Studio Code w/Pylance (latest release)

🏆 Acknowledgement

Special thanks to these fellow CS50AI classmates who contributed some of the test cases on the Ed discussion site!

  • Ken Walker
  • Naveena A S
  • Ricardo L
Owner
Jet Kan
Tutor and Computer Science Undergraduate, National University of Singapore (NUS)
Jet Kan
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022