Entity-Based Knowledge Conflicts in Question Answering.

Overview

Entity-Based Knowledge Conflicts in Question Answering

Run Instructions | Paper | Citation | License

This repository provides the Substitution Framework described in Section 2 of our paper Entity-Based Knowledge Conflicts in Question Answering. Given a quesion answering dataset, we derive a new dataset where the context passages have been modified to have new answers to their question. By training on the original examples and evaluating on the derived examples, we simulate a parametric-contextual knowledge conflict --- useful for understanding how model's employ sources of knowledge to arrive at a decision.

Our dataset derivation follows two steps: (1) identifying named entity answers, and (2) replacing all occurrences of the answer in the context with a substituted entity, effectively changing the answer. The answer substitutions depend on the chosen substitution policy.

Run Instructions

1. Setup

Setup requirements and download SpaCy and WikiData dependencies.

bash setup.sh

2. (Optional) Download and Process Wikidata

This optional stage reproduces wikidata/entity_info.json.gz, downloaded during Setup.

Download the Wikidata dump from October 2020 here and the Wikipedia pageviews from June 2, 2020 here.

NOTE: We don't use the newest Wikidata dump because Wikidata doesn't keep old dumps so reproducibility is an issue. If you'd like to use the newest dump, it is available here. Wikipedia pageviews, on the other hand, are kept around and can be found here. Be sure to download the *-user.bz2 file and not the *-automatic.bz2 or the *-spider.bz2 files.

To extract out Wikidata information, run the following (takes ~8 hours)

python extract_wikidata_info.py --wikidata_dump wikidata-20201026-all.json.bz2 --popularity_dump pageviews-20210602-user.bz2 --output_file entity_info.json.gz

The output file of this step is available here.

3. Load and Preprocess Dataset

PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsTrain -w wikidata/entity_info.json.gz
PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsDev -w wikidata/entity_info.json.gz

4. Generate Substitutions

PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsTrain.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsTrain
   
    .jsonl 
    
      -n 1 ...
PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsDev.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsDev
     
      .jsonl 
      
        -n 1 ...

      
     
    
   

See descriptions of the substitution policies (substitution-commands) we provide here. Inspect the argparse and substitution-specific subparsers in generate_substitutions.py to see additional arguments.

Our Substitution Functions

Here we define the the substitution functions we provide. These functions ingests a QADataset, and modifies the context passage, according to defined rules, such that there is now a new answer to the question, according to the context. Greater detail is provided in our paper.

  • Alias Substitution (sub-command: alias-substitution) --- Here we replace an answer with one of it's wikidata aliases. Since the substituted answer is always semantically equivalent, answer type preservation is naturally maintained.
  • Popularity Substitution (sub-command: popularity-substitution) --- Here we replace answers with a WikiData answer of the same type, with a specified popularity bracket (according to monthly page views).
  • Corpus Substitution (sub-command: corpus-substitution) --- Here we replace answers with other answers of the same type, sampled from the same corpus.
  • Type Swap Substitution (sub-command: type-swap-substitution) --- Here we replace answers with other answers of different type, sampled from the same corpus.

How to Add Your own Dataset / Substitution Fn / NER Models

Use your own Dataset

To add your own dataset, create your own subclass of QADataset (in src/classes/qadataset.py).

  1. Overwrite the read_original_dataset function, to read your dataset, creating a List of QAExample objects.
  2. Add your class and the url/filepath to the DATASETS variable in src/load_dataset.py.

See MRQANaturalQuetsionsDataset in src/classes/qadataset.py as an example.

Use your own Substitution Function

We define 5 different substitution functions in src/generate_substitutions.py. These are described here. Inspect their docstrings and feel free to add your own, leveraging any of the wikidata, derived answer type, or other info we populate for examples and answers. Here are the steps to create your own:

  1. Add a subparser in src/generate_substitutions.py for your new function, with any relevant parameters. See alias_sub_parser as an example.
  2. Add your own substitution function to src/substitution_fns.py, ensuring the signature arguments match those specified in the subparser. See alias_substitution_fn as an example.
  3. Add a reference to your new function to SUBSTITUTION_FNS in src/generate_substitutions.py. Ensure the dictionary key matches the subparser name.

Use your own Named Entity Recognition and/or Entity Linking Model

Our SpaCy NER model is trained and used mainly to categorize answer text into answer types. Only substitutions that preserve answer type are likely to be coherent.

The functions which need to be changed are:

  1. run_ner_linking in utils.py, which loads the NER model and populates info for each answer (see function docstring).
  2. Answer._select_answer_type() in src/classes/answer.py, which uses the NER answer type label and wikidata type labels to cateogrize the answer into a type category.

Citation

Please cite the following if you found this resource or our paper useful.

@misc{longpre2021entitybased,
      title={Entity-Based Knowledge Conflicts in Question Answering}, 
      author={Shayne Longpre and Kartik Perisetla and Anthony Chen and Nikhil Ramesh and Chris DuBois and Sameer Singh},
      year={2021},
      eprint={2109.05052},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

The Knowledge Conflicts repository, and entity-based substitution framework are licensed according to the LICENSE file.

Contact Us

To contact us feel free to email the authors in the paper or create an issue in this repository.

Owner
Apple
Apple
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022