Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Overview

solo-epd-loader

Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD). Provides level 2 (l2) and low latency (ll) data obtained through CDF files from ESA's Solar Orbiter Archive (SOAR) for the following sensors:

  • Electron Proton Telescope (EPT)
  • High Energy Telescope (HET)
  • SupraThermal Electrons and Protons (STEP)

Installation

solo_epd_loader requires python >= 3.6, and it depends on cdflib and heliopy (which will be automatically installed). It can be installed from PyPI using:

pip install solo-epd-loader

Usage

The standard usecase is to utilize the epd_load function, which returns Pandas dataframe(s) of the EPD measurements and a dictionary containing information on the energy channels.

from solo_epd_loader import epd_load

df_1, df_2, energies = \
    epd_load(sensor, viewing, level, startdate, enddate, path, autodownload)

Input

  • sensor: ept, het, or step (string)
  • viewing: sun, asun, north, or south (string); not needed for sensor = step
  • level: ll or l2 (string)
  • startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is provided, enddate = startdate will be used)
  • path: directory in which Solar Orbiter data is/should be organized; e.g. /home/userxyz/solo/data/ (string)
  • autodownload: if True will try to download missing data files from SOAR (bolean)

Return

  • For sensor = ept or het:
    1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in ‘particles / (s cm^2 sr MeV)’
    2. Pandas dataframe with electron fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    3. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV
  • For sensor = step:
    1. Pandas dataframe with fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    2. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV

Data folder structure

The path variable provided to the module should be the base directory where the corresponding cdf data files should be placed in subdirectories. First subfolder defines the data product level (l2 or low_latency at the moment), the next one the instrument (so far only epd), and finally the sensor (ept, het or step).

For example, the folder structure could look like this: /home/userxyz/solo/data/l2/epd/het. In this case, you should call the loader with path=/home/userxyz/solo/data; i.e., the base directory for the data.

You can use the (automatic) download function described in the following section to let the subfolders be created initially automatically. NB: It might be that you need to run the code with sudo or admin privileges in order to be able to create new folders on your system.

Data download within Python

While using epd_load() to obtain the data, one can choose to automatically download missing data files from SOAR directly from within python. They are saved in the folder provided by the path argument (see above). For that, just add autodownload=True to the function call:

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/', autodownload=True)

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Note: The code will always download the latest version of the file available at SOAR. So in case a file V01.cdf is already locally present, V02.cdf will be downloaded nonetheless.

Example 1 - low latency data

Example code that loads low latency (ll) electron and proton (+alphas) fluxes (and errors) for EPT NORTH telescope from Apr 15 2021 to Apr 16 2021 into two Pandas dataframes (one for protons & alphas, one for electrons). In general available are ‘sun’, ‘asun’, ‘north’, and ‘south’ viewing directions for ‘ept’ and ‘het’ telescopes of SolO/EPD.

from solo_epd_loader import *

df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='north', level='ll',
             startdate=20210415, enddate=20210416, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 2 - level 2 data

Example code that loads level 2 (l2) electron and proton (+alphas) fluxes (and errors) for HET SUN telescope from Aug 20 2020 to Aug 20 2020 into two Pandas dataframes (one for protons & alphas, one for electrons).

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 3 - reproducing EPT data from Fig. 2 in Gómez-Herrero et al. 2021 [1]

from solo_epd_loader import epd_load

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2', startdate=20200708,
             enddate=20200724, path=lpath, autodownload=True)

# change time resolution to get smoother curve (resample with mean)
resample = '60min'

fig, axs = plt.subplots(2, sharex=True)
fig.suptitle('EPT Sun')

# plot selection of channels
for channel in [0, 8, 16, 26]:
    df_electrons['Electron_Flux'][f'Electron_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[0], logy=True,
        label=energies["Electron_Bins_Text"][channel][0])
for channel in [6, 22, 32, 48]:
    df_protons['Ion_Flux'][f'Ion_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[1], logy=True,
        label=energies["Ion_Bins_Text"][channel][0])

axs[0].set_ylim([0.3, 4e6])
axs[1].set_ylim([0.01, 5e8])

axs[0].set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[1].set_ylabel("Ion flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[0].legend()
axs[1].legend()
plt.subplots_adjust(hspace=0)
plt.show()

NB: This is just an approximate reproduction with different energy channels (smaller, not combined) and different time resolution! Figure

Example 4 - reproducing EPT data from Fig. 2 in Wimmer-Schweingruber et al. 2021 [2]

from solo_epd_loader import epd_load
import datetime

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons_sun, df_electrons_sun, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_asun, df_electrons_asun, energies = \
    epd_load(sensor='ept', viewing='asun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_south, df_electrons_south, energies = \
    epd_load(sensor='ept', viewing='south', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_north, df_electrons_north, energies = \
    epd_load(sensor='ept', viewing='north', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)

# plot mean intensities of two energy channels; 'channel' defines the lower one
channel = 6
ax = pd.concat([df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='sun', color='#d62728')
ax = pd.concat([df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='asun', color='#ff7f0e')
ax = pd.concat([df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='north', color='#1f77b4')
ax = pd.concat([df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='south', color='#2ca02c')

plt.xlim([datetime.datetime(2020, 12, 10, 23, 0),
          datetime.datetime(2020, 12, 11, 12, 0)])

ax.set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
plt.title('EPT electrons ('+str(energies['Electron_Bins_Low_Energy'][channel])
          + '-' + str(energies['Electron_Bins_Low_Energy'][channel+2])+' MeV)')
plt.legend()
plt.show()

NB: This is just an approximate reproduction; e.g., the channel combination is a over-simplified approximation! image1

References

[1] First near-relativistic solar electron events observed by EPD onboard Solar Orbiter, Gómez-Herrero et al., A&A, 656 (2021) L3, https://doi.org/10.1051/0004-6361/202039883
[2] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter’s Energetic Particle Detector, Wimmer-Schweingruber et al., A&A, 656 (2021) A22, https://doi.org/10.1051/0004-6361/202140940

License

This project is Copyright (c) Jan Gieseler and licensed under the terms of the BSD 3-clause license. This package is based upon the Openastronomy packaging guide which is licensed under the BSD 3-clause licence. See the licenses folder for more information.

Comments
  • Environment variable for path

    Environment variable for path

    Would it be possible to use (optionally) an environment variable for the path (preferably the same for all loaders)? That would make it much easier for multi-user environments to have data in one location only. Granted, it would possibly also need some file permission changing as well...

    enhancement 
    opened by tlml 12
  • Replacing FILLVALUES not working with pandas 1.5.0

    Replacing FILLVALUES not working with pandas 1.5.0

    At least until pandas 1.4.4 the replacement of FILLVAUES done by the following code worked: https://github.com/jgieseler/solo-epd-loader/blob/f92e4e995a273d5755792c3f02e4ea3c33cfc675/solo_epd_loader/init.py#L754-L761

    But since pandas 1.5.0 it doesn't work anymore, and the values of -1e+31 are not replaced with np.nan's.

    I don't know the reason, maybe it has to do with the fact that the corresponding DataFrames have a MultiIndex.

    bug 
    opened by jgieseler 1
  • Catch error that python doesn't have rights to create folders

    Catch error that python doesn't have rights to create folders

    Data for the different detectors are downloaded in subdirectories of the data directory provided by path. Under some circumstances, the script doesn't have the necessary rights to create these folders if they don't already exist. Then a FileNotFoundError: [Errno 2] No such file or directory: {path+subdir+file} is raised.

    Catch this problem and/or provide a meaningful warning message.

    bug 
    opened by jgieseler 1
  • Change from heliopy's cdf2lib to sunpy's read_cdf

    Change from heliopy's cdf2lib to sunpy's read_cdf

    Change the function to read cdf files from heliopy's cdf2lib() to sunpy's read_cdf() in _read_epd_cdf(); i.e., applies to EPT and HET data, not STEP data. The latter is read in manually using cdflib

    opened by jgieseler 0
  • Make downloading of all viewings optional

    Make downloading of all viewings optional

    SolO/EPD/EPT has for viewing directions; each delivered in a separate data file. Right now, all viewing files are downloaded for a requested day, even so the call to solo-epd-loader specifically asks for a single viewing direction and only returns that data. This has been included in the beginning because usually we have been interested in having all viewing-direction files anyhow. But it makes sense to have this at least as an option, so that you can deactivate this behaviour in case you want to only have e.g. the 'sun' viewing direction.

    enhancement 
    opened by jgieseler 0
  • Include resampling functionality

    Include resampling functionality

    Include resampling functionality like https://github.com/serpentine-h2020/SEPpy/blob/bc2e3e0662a019147d25bd554edbceaf7328e25b/seppy/loader/stereo.py#L24-L38

    enhancement 
    opened by jgieseler 0
  • Clean install_requires in setup.cfg

    Clean install_requires in setup.cfg

    With https://github.com/jgieseler/solo-epd-loader/commit/8fede59ac7a529cb1189f1ac40ddf20755b5cdaf bz4 and datetime have been added to the install_requires in setup.cfg (in the progress of establishing some testing), but this is not liked by the conda-forge version, which complains when bz4 and datetime are listed as requirements in the meta.yaml file. This needs to be sorted out.

    Until then, pip check has been removed from meta.yaml, cf. https://github.com/jgieseler/solo-epd-loader-feedstock/commit/9d9eda523e1690fc1d520bca4a4a40eba521b6be

    opened by jgieseler 0
  • Set level='l2' as default

    Set level='l2' as default

    Right now, level is a required positional argument. Set this by default to 'l2' because this should be the standard data product one should use if in doubt.

    opened by jgieseler 0
  • Add calc_av_en_flux_EPD()

    Add calc_av_en_flux_EPD()

    Add function that averages the flux of several energy channels into a combined energy channel. In principle already available here, but needs to be corectly integrated.

    enhancement 
    opened by jgieseler 1
  • Use sunpy_soar for downloading data from SOAR

    Use sunpy_soar for downloading data from SOAR

    sunpy_soar supports since v1.4 also low latency data. So it now is able to obtain all the same data we're downloading until now with solo_epd_loader (the source is in both cases ESA's SOAR). For the future, it would be worthwhile to completely move the downloading process to sunpy_soar to avoid duplication (and sunpy_soar is definitely much better written than my code 😅).

    enhancement 
    opened by jgieseler 1
Releases(v0.1.11)
Owner
Jan Gieseler
Jan Gieseler
In this project , I play with the YouTube data API and extract trending videos in Nigeria on a particular day

YouTubeTrendingVideosAnalysis In this project , I played with the YouTube data API and extracted trending videos in Nigeria on a particular day. This

1 Jan 11, 2022
Script de monitoramento de telemetria para missões espaciais, cansat e foguetemodelismo.

Aeroespace_GroundStation Script de monitoramento de telemetria para missões espaciais, cansat e foguetemodelismo. Imagem 1 - Dashboard realizando moni

Vinícius Azevedo 5 Nov 27, 2022
pgvector support for Python

pgvector-python pgvector support for Python Great for online recommendations 🎉 Supports Django, SQLAlchemy, Psycopg 2, Psycopg 3, and asyncpg Install

Andrew Kane 37 Dec 20, 2022
ALSPAC data analysis studying links between screen-usage and mental health issues in children. Provided data has been synthesised.

ADSMH - Mental Health and Screen Time Group coursework for Applied Data Science at the University of Bristol. Overview The data set that you have was

Kai 1 Jan 13, 2022
DeDRM tools for ebooks

DeDRM_tools DeDRM tools for ebooks This is a fork of Apprentice Harper's version of the DeDRM tools. I've added some of the PRs that still haven't bee

2 Jan 10, 2022
Module for remote in-memory Python package/module loading through HTTP/S

httpimport Python's missing feature! The feature has been suggested in Python Mailing List Remote, in-memory Python package/module importing through H

John Torakis 220 Dec 17, 2022
An extended version of the hotkeys demo code using action classes

An extended version of the hotkeys application using action classes. In adafruit's Hotkeys code, a macro is using a series of integers, assumed to be

Neradoc 5 May 01, 2022
A general illumination correction method for optical microscopy.

CIDRE About CIDRE is a retrospective illumination correction method for optical microscopy. It is designed to correct collections of images by buildin

Kevin Smith 31 Sep 07, 2022
A bot to view Dilbert comics directly from Discord and get updates of the comics automatically.

A bot to view Dilbert comics directly from Discord and get updates of the comics automatically

Raghav Sharma 3 Nov 30, 2022
Team Curie is a group of people working together to achieve a common aim

Team Curie is a group of people working together to achieve a common aim. We are enthusiasts!.... We are setting the pace!.... We offer encouragement and motivation....And we believe TeamWork makes t

4 Aug 07, 2021
a simple proof system I made to learn math without any mistakes

math_up a simple proof system I made to learn math without any mistakes 0. Short Introduction test yourself, enjoy your math! math_up is an NBG-based,

양현우 5 Jun 04, 2021
Algorand Python API examples

Algorand-Py Algorand Python API examples This repo will hold example scripts to monitor activities on Algorand main net. You can: Monitor your assets

Karthik Dutt 2 Jan 23, 2022
A Python 3 client for the beanstalkd work queue

Greenstalk Greenstalk is a small and unopinionated Python client library for communicating with the beanstalkd work queue. The API provided mostly map

Justin Mayhew 67 Dec 08, 2022
This library attempts to abstract the handling of Sigma rules in Python

This library attempts to abstract the handling of Sigma rules in Python. The rules are parsed using a schema defined with pydantic, and can be easily loaded from YAML files into a structured Python o

Caleb Stewart 44 Oct 29, 2022
Sentiment Based Product Recommendation System

Sentiment Based Product Recommendation System The e-commerce business is quite p

Sumit Sahay 2 Jan 15, 2022
Painel de consulta

⚙ FullP 1.1 Instalação 💻 git clone https://github.com/gav1x/FullP.git cd FullP pip3 install -r requirements.txt python3 main.py Um pequeno

gav1x 26 Oct 11, 2022
☘️ Projet Voltaire Solver in Python3

☘️ Projet Voltaire Solver in Python3

Bidouffe 8 Dec 02, 2022
Python library for the analysis of dynamic measurements

Python library for the analysis of dynamic measurements The goal of this library is to provide a starting point for users in metrology and related are

Physikalisch-Technische Bundesanstalt - Department 9.4 'Metrology for the digital Transformation' 18 Dec 21, 2022
MoBioTools A simple yet versatile toolkit to automatically setup quantum mechanics/molecular mechanics

A simple yet versatile toolkit to setup quantum mechanical/molecular mechanical (QM/MM) calculations from molecular dynamics trajectories.

MoBioChem 17 Nov 27, 2022
This is a simple bank management system based on Python.

Python Bank Management This is a simple bank management system based on Python. It's able to do basic operations of simple bank management. Outcome: W

Md. Rakibul Islam 3 Jan 06, 2022