Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Overview

solo-epd-loader

Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD). Provides level 2 (l2) and low latency (ll) data obtained through CDF files from ESA's Solar Orbiter Archive (SOAR) for the following sensors:

  • Electron Proton Telescope (EPT)
  • High Energy Telescope (HET)
  • SupraThermal Electrons and Protons (STEP)

Installation

solo_epd_loader requires python >= 3.6, and it depends on cdflib and heliopy (which will be automatically installed). It can be installed from PyPI using:

pip install solo-epd-loader

Usage

The standard usecase is to utilize the epd_load function, which returns Pandas dataframe(s) of the EPD measurements and a dictionary containing information on the energy channels.

from solo_epd_loader import epd_load

df_1, df_2, energies = \
    epd_load(sensor, viewing, level, startdate, enddate, path, autodownload)

Input

  • sensor: ept, het, or step (string)
  • viewing: sun, asun, north, or south (string); not needed for sensor = step
  • level: ll or l2 (string)
  • startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is provided, enddate = startdate will be used)
  • path: directory in which Solar Orbiter data is/should be organized; e.g. /home/userxyz/solo/data/ (string)
  • autodownload: if True will try to download missing data files from SOAR (bolean)

Return

  • For sensor = ept or het:
    1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in ‘particles / (s cm^2 sr MeV)’
    2. Pandas dataframe with electron fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    3. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV
  • For sensor = step:
    1. Pandas dataframe with fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    2. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV

Data folder structure

The path variable provided to the module should be the base directory where the corresponding cdf data files should be placed in subdirectories. First subfolder defines the data product level (l2 or low_latency at the moment), the next one the instrument (so far only epd), and finally the sensor (ept, het or step).

For example, the folder structure could look like this: /home/userxyz/solo/data/l2/epd/het. In this case, you should call the loader with path=/home/userxyz/solo/data; i.e., the base directory for the data.

You can use the (automatic) download function described in the following section to let the subfolders be created initially automatically. NB: It might be that you need to run the code with sudo or admin privileges in order to be able to create new folders on your system.

Data download within Python

While using epd_load() to obtain the data, one can choose to automatically download missing data files from SOAR directly from within python. They are saved in the folder provided by the path argument (see above). For that, just add autodownload=True to the function call:

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/', autodownload=True)

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Note: The code will always download the latest version of the file available at SOAR. So in case a file V01.cdf is already locally present, V02.cdf will be downloaded nonetheless.

Example 1 - low latency data

Example code that loads low latency (ll) electron and proton (+alphas) fluxes (and errors) for EPT NORTH telescope from Apr 15 2021 to Apr 16 2021 into two Pandas dataframes (one for protons & alphas, one for electrons). In general available are ‘sun’, ‘asun’, ‘north’, and ‘south’ viewing directions for ‘ept’ and ‘het’ telescopes of SolO/EPD.

from solo_epd_loader import *

df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='north', level='ll',
             startdate=20210415, enddate=20210416, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 2 - level 2 data

Example code that loads level 2 (l2) electron and proton (+alphas) fluxes (and errors) for HET SUN telescope from Aug 20 2020 to Aug 20 2020 into two Pandas dataframes (one for protons & alphas, one for electrons).

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 3 - reproducing EPT data from Fig. 2 in Gómez-Herrero et al. 2021 [1]

from solo_epd_loader import epd_load

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2', startdate=20200708,
             enddate=20200724, path=lpath, autodownload=True)

# change time resolution to get smoother curve (resample with mean)
resample = '60min'

fig, axs = plt.subplots(2, sharex=True)
fig.suptitle('EPT Sun')

# plot selection of channels
for channel in [0, 8, 16, 26]:
    df_electrons['Electron_Flux'][f'Electron_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[0], logy=True,
        label=energies["Electron_Bins_Text"][channel][0])
for channel in [6, 22, 32, 48]:
    df_protons['Ion_Flux'][f'Ion_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[1], logy=True,
        label=energies["Ion_Bins_Text"][channel][0])

axs[0].set_ylim([0.3, 4e6])
axs[1].set_ylim([0.01, 5e8])

axs[0].set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[1].set_ylabel("Ion flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[0].legend()
axs[1].legend()
plt.subplots_adjust(hspace=0)
plt.show()

NB: This is just an approximate reproduction with different energy channels (smaller, not combined) and different time resolution! Figure

Example 4 - reproducing EPT data from Fig. 2 in Wimmer-Schweingruber et al. 2021 [2]

from solo_epd_loader import epd_load
import datetime

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons_sun, df_electrons_sun, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_asun, df_electrons_asun, energies = \
    epd_load(sensor='ept', viewing='asun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_south, df_electrons_south, energies = \
    epd_load(sensor='ept', viewing='south', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_north, df_electrons_north, energies = \
    epd_load(sensor='ept', viewing='north', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)

# plot mean intensities of two energy channels; 'channel' defines the lower one
channel = 6
ax = pd.concat([df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='sun', color='#d62728')
ax = pd.concat([df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='asun', color='#ff7f0e')
ax = pd.concat([df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='north', color='#1f77b4')
ax = pd.concat([df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='south', color='#2ca02c')

plt.xlim([datetime.datetime(2020, 12, 10, 23, 0),
          datetime.datetime(2020, 12, 11, 12, 0)])

ax.set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
plt.title('EPT electrons ('+str(energies['Electron_Bins_Low_Energy'][channel])
          + '-' + str(energies['Electron_Bins_Low_Energy'][channel+2])+' MeV)')
plt.legend()
plt.show()

NB: This is just an approximate reproduction; e.g., the channel combination is a over-simplified approximation! image1

References

[1] First near-relativistic solar electron events observed by EPD onboard Solar Orbiter, Gómez-Herrero et al., A&A, 656 (2021) L3, https://doi.org/10.1051/0004-6361/202039883
[2] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter’s Energetic Particle Detector, Wimmer-Schweingruber et al., A&A, 656 (2021) A22, https://doi.org/10.1051/0004-6361/202140940

License

This project is Copyright (c) Jan Gieseler and licensed under the terms of the BSD 3-clause license. This package is based upon the Openastronomy packaging guide which is licensed under the BSD 3-clause licence. See the licenses folder for more information.

Comments
  • Environment variable for path

    Environment variable for path

    Would it be possible to use (optionally) an environment variable for the path (preferably the same for all loaders)? That would make it much easier for multi-user environments to have data in one location only. Granted, it would possibly also need some file permission changing as well...

    enhancement 
    opened by tlml 12
  • Replacing FILLVALUES not working with pandas 1.5.0

    Replacing FILLVALUES not working with pandas 1.5.0

    At least until pandas 1.4.4 the replacement of FILLVAUES done by the following code worked: https://github.com/jgieseler/solo-epd-loader/blob/f92e4e995a273d5755792c3f02e4ea3c33cfc675/solo_epd_loader/init.py#L754-L761

    But since pandas 1.5.0 it doesn't work anymore, and the values of -1e+31 are not replaced with np.nan's.

    I don't know the reason, maybe it has to do with the fact that the corresponding DataFrames have a MultiIndex.

    bug 
    opened by jgieseler 1
  • Catch error that python doesn't have rights to create folders

    Catch error that python doesn't have rights to create folders

    Data for the different detectors are downloaded in subdirectories of the data directory provided by path. Under some circumstances, the script doesn't have the necessary rights to create these folders if they don't already exist. Then a FileNotFoundError: [Errno 2] No such file or directory: {path+subdir+file} is raised.

    Catch this problem and/or provide a meaningful warning message.

    bug 
    opened by jgieseler 1
  • Change from heliopy's cdf2lib to sunpy's read_cdf

    Change from heliopy's cdf2lib to sunpy's read_cdf

    Change the function to read cdf files from heliopy's cdf2lib() to sunpy's read_cdf() in _read_epd_cdf(); i.e., applies to EPT and HET data, not STEP data. The latter is read in manually using cdflib

    opened by jgieseler 0
  • Make downloading of all viewings optional

    Make downloading of all viewings optional

    SolO/EPD/EPT has for viewing directions; each delivered in a separate data file. Right now, all viewing files are downloaded for a requested day, even so the call to solo-epd-loader specifically asks for a single viewing direction and only returns that data. This has been included in the beginning because usually we have been interested in having all viewing-direction files anyhow. But it makes sense to have this at least as an option, so that you can deactivate this behaviour in case you want to only have e.g. the 'sun' viewing direction.

    enhancement 
    opened by jgieseler 0
  • Include resampling functionality

    Include resampling functionality

    Include resampling functionality like https://github.com/serpentine-h2020/SEPpy/blob/bc2e3e0662a019147d25bd554edbceaf7328e25b/seppy/loader/stereo.py#L24-L38

    enhancement 
    opened by jgieseler 0
  • Clean install_requires in setup.cfg

    Clean install_requires in setup.cfg

    With https://github.com/jgieseler/solo-epd-loader/commit/8fede59ac7a529cb1189f1ac40ddf20755b5cdaf bz4 and datetime have been added to the install_requires in setup.cfg (in the progress of establishing some testing), but this is not liked by the conda-forge version, which complains when bz4 and datetime are listed as requirements in the meta.yaml file. This needs to be sorted out.

    Until then, pip check has been removed from meta.yaml, cf. https://github.com/jgieseler/solo-epd-loader-feedstock/commit/9d9eda523e1690fc1d520bca4a4a40eba521b6be

    opened by jgieseler 0
  • Set level='l2' as default

    Set level='l2' as default

    Right now, level is a required positional argument. Set this by default to 'l2' because this should be the standard data product one should use if in doubt.

    opened by jgieseler 0
  • Add calc_av_en_flux_EPD()

    Add calc_av_en_flux_EPD()

    Add function that averages the flux of several energy channels into a combined energy channel. In principle already available here, but needs to be corectly integrated.

    enhancement 
    opened by jgieseler 1
  • Use sunpy_soar for downloading data from SOAR

    Use sunpy_soar for downloading data from SOAR

    sunpy_soar supports since v1.4 also low latency data. So it now is able to obtain all the same data we're downloading until now with solo_epd_loader (the source is in both cases ESA's SOAR). For the future, it would be worthwhile to completely move the downloading process to sunpy_soar to avoid duplication (and sunpy_soar is definitely much better written than my code 😅).

    enhancement 
    opened by jgieseler 1
Releases(v0.1.11)
Owner
Jan Gieseler
Jan Gieseler
A Python feed reader library.

reader is a Python feed reader library. It aims to allow writing feed reader applications without any business code, and without enforcing a dependenc

266 Dec 30, 2022
:snake: Complete C99 parser in pure Python

pycparser v2.20 Contents 1 Introduction 1.1 What is pycparser? 1.2 What is it good for? 1.3 Which version of C does pycparser support? 1.4 What gramma

Eli Bendersky 2.8k Dec 29, 2022
A simple string parser based on CLR to check whether a string is acceptable or not for a given grammar.

A simple string parser based on CLR to check whether a string is acceptable or not for a given grammar.

Bharath M Kulkarni 1 Dec 15, 2021
A webapp that timestamps key moments in a football clip

A look into what we're building Demo.mp4 Prerequisites Python 3 Node v16+ Steps to run Create a virtual environment. Activate the virtual environment.

Pranav 1 Dec 10, 2021
An integrated library for checking email if it is registered on social media

An integrated library for checking email if it is registered on social media

Sidra ELEzz 13 Dec 08, 2022
Program to send ROM files to Turbo Everdrive; reverse-engineered and designed to be platform-independent

PCE_TurboEverdrive_USB What is this "TurboEverdrive USB" thing ? For those who have a TurboEverdrive v2.x from krikzz.com, there was originally an opt

David Shadoff 10 Sep 18, 2022
Med to csv - A simple way to parse MedAssociate output file in tidy data

MedAssociates to CSV file A simple way to parse MedAssociate output file in tidy

Jean-Emmanuel Longueville 5 Sep 09, 2022
A collection of modern themes for Tkinter TTK

ttkbootstrap A collection of modern flat themes inspired by Bootstrap. Also includes TTK Creator which allows you to easily create and use your own th

Israel Dryer 827 Jan 04, 2023
A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output.

quera_testcase_checker A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output. proper way to u

k3y1 1 Nov 15, 2021
Tugas kelompok Struktur Data

Binary-Tree Tugas kelompok Struktur Data Silahkan jika ingin mengubah tipe data pada operasi binary tree *Boleh juga semua program kelompok bisa disat

Usmar manalu 2 Nov 28, 2022
Fofa asset consolidation script

资产收集+C段整理二合一 基于fofa资产搜索引擎进行资产收集,快速检索目标条件下的IP,URL以及标题,适用于资产较多时对模糊资产的快速检索,新增C段整理功能,整理出

白泽Sec安全实验室 36 Dec 01, 2022
python scripts and other files to generate induction encoder PCBs in Kicad

induction_encoder python scripts and other files to generate induction encoder PCBs in Kicad Targeting the Renesas IPS2200 encoder chips.

Taylor Alexander 8 Feb 16, 2022
Meilleur outil de hacking Zapp en 2021 pour Termux

WhatsApp-Tool Meilleur outil de hacking Zapp en 2021 pour Termux Cet outil est le seul prennant en compte les dernières mises à jour de WhatsApp. FONC

2 Aug 17, 2022
A Klipper plugin for accurate Z homing

Stable Z Homing for Klipper A Klipper plugin for accurate Z homing This plugin provides a new G-code command, STABLE_Z_HOME, which homes Z repeatedly

Matthew Lloyd 24 Dec 28, 2022
Blender addon that enables exporting of xmodels from blender. Great for custom asset creation for cod games

Birdman's XModel Tools For Blender Greetings everyone in the custom cod community. This blender addon should finally enable exporting of custom assets

wast 2 Jul 02, 2022
Test for using pyIIIFpres for rara magnetica project

raramagnetica_pyIIIFpres Test for using pyIIIFpres for rara magnetica project. This test show how to use pyIIIFpres for creating mannifest compliant t

Giacomo Marchioro 1 Dec 03, 2021
Prop-based map editor for the Apex Legends mod, R5Reloaded

R5R Map Editor A tool to build maps out of props in the Apex Legends mod, R5Reloaded Instuctions Install R5R Download this program Get the prop spawne

7 Dec 16, 2022
Today I Commit (1일 1커밋) 챌린지 알림 봇

Today I Commit Challenge 1일1커밋 챌린지를 위한 알림 봇 config.py github_token = "github private access key" slack_token = "slack authorization token" channel = "

sunho 4 Nov 08, 2021
A fishing bot script written in Python!

A fishing bot script written in Python!

Anel Drocic 3 Nov 03, 2021
script to analyze EQ decay using python

pyq_decay script to analyze EQ decay using python PyQ Decay ver 1.0 A pythonic script to analyze EQ aftershock decay using method of Omori (1894), Mog

1 Nov 04, 2021