Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Overview

Neural Turing Machine (NTM) &

Differentiable Neural Computer (DNC) with

pytorch & visdom


  • Sample on-line plotting while training(avg loss)/testing(write/read weights & memory) NTM on the copy task (top 2 rows, 1st row converges to sequentially write to lower locations, 2nd row converges to sequentially write to upper locations) and DNC on the repeat-copy task (3rd row) (the write/read weights here are after location focus so are no longer necessarily normalized within each head by design):

  • Sample loggings while training DNC on the repeat-copy task (we use WARNING as the logging level currently to get rid of the INFO printouts from visdom):
[WARNING ] (MainProcess) <===================================>
[WARNING ] (MainProcess) bash$: python -m visdom.server
[WARNING ] (MainProcess) http://localhost:8097/env/daim_17051000
[WARNING ] (MainProcess) <===================================> Agent:
[WARNING ] (MainProcess) <-----------------------------======> Env:
[WARNING ] (MainProcess) Creating {repeat-copy | } w/ Seed: 123
[WARNING ] (MainProcess) Word     {length}:   {4}
[WARNING ] (MainProcess) Words #  {min, max}: {1, 2}
[WARNING ] (MainProcess) Repeats  {min, max}: {1, 2}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Controller, Accessor}
[WARNING ] (MainProcess) <--------------------------------===> Controller:
[WARNING ] (MainProcess) LSTMController (
  (in_2_hid): LSTMCell(70, 64, bias=1)
)
[WARNING ] (MainProcess) <--------------------------------===> Accessor:   {WriteHead, ReadHead, Memory}
[WARNING ] (MainProcess) <-----------------------------------> WriteHeads: {1 heads}
[WARNING ] (MainProcess) DynamicWriteHead (
  (hid_2_key): Linear (64 -> 16)
  (hid_2_beta): Linear (64 -> 1)
  (hid_2_alloc_gate): Linear (64 -> 1)
  (hid_2_write_gate): Linear (64 -> 1)
  (hid_2_erase): Linear (64 -> 16)
  (hid_2_add): Linear (64 -> 16)
)
[WARNING ] (MainProcess) <-----------------------------------> ReadHeads:  {4 heads}
[WARNING ] (MainProcess) DynamicReadHead (
  (hid_2_key): Linear (64 -> 64)
  (hid_2_beta): Linear (64 -> 4)
  (hid_2_free_gate): Linear (64 -> 4)
  (hid_2_read_mode): Linear (64 -> 12)
)
[WARNING ] (MainProcess) <-----------------------------------> Memory:     {16(batch_size) x 16(mem_hei) x 16(mem_wid)}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Overall Architecture}
[WARNING ] (MainProcess) DNCCircuit (
  (controller): LSTMController (
    (in_2_hid): LSTMCell(70, 64, bias=1)
  )
  (accessor): DynamicAccessor (
    (write_heads): DynamicWriteHead (
      (hid_2_key): Linear (64 -> 16)
      (hid_2_beta): Linear (64 -> 1)
      (hid_2_alloc_gate): Linear (64 -> 1)
      (hid_2_write_gate): Linear (64 -> 1)
      (hid_2_erase): Linear (64 -> 16)
      (hid_2_add): Linear (64 -> 16)
    )
    (read_heads): DynamicReadHead (
      (hid_2_key): Linear (64 -> 64)
      (hid_2_beta): Linear (64 -> 4)
      (hid_2_free_gate): Linear (64 -> 4)
      (hid_2_read_mode): Linear (64 -> 12)
    )
  )
  (hid_to_out): Linear (128 -> 5)
)
[WARNING ] (MainProcess) No Pretrained Model. Will Train From Scratch.
[WARNING ] (MainProcess) <===================================> Training ...
[WARNING ] (MainProcess) Reporting       @ Step: 500 | Elapsed Time: 30.609361887
[WARNING ] (MainProcess) Training Stats:   avg_loss:         0.014866309287
[WARNING ] (MainProcess) Evaluating      @ Step: 500
[WARNING ] (MainProcess) Evaluation        Took: 1.6457400322
[WARNING ] (MainProcess) Iteration: 500; loss_avg: 0.0140423600748
[WARNING ] (MainProcess) Saving Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth ...
[WARNING ] (MainProcess) Saved  Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth.
[WARNING ] (MainProcess) Resume Training @ Step: 500
...

What is included?

This repo currently contains the following algorithms:

  • Neural Turing Machines (NTM) [1]
  • Differentiable Neural Computers (DNC) [2]

Tasks:

  • copy
  • repeat-copy

Code structure & Naming conventions

NOTE: we follow the exact code structure as pytorch-rl so as to make the code easily transplantable.

  • ./utils/factory.py

We suggest the users refer to ./utils/factory.py, where we list all the integrated Env, Circuit, Agent into Dict's. All of the core classes are implemented in ./core/. The factory pattern in ./utils/factory.py makes the code super clean, as no matter what type of Circuit you want to train, or which type of Env you want to train on, all you need to do is to simply modify some parameters in ./utils/options.py, then the ./main.py will do it all (NOTE: this ./main.py file never needs to be modified).

  • namings

To make the code more clean and readable, we name the variables using the following pattern:

  • *_vb: torch.autograd.Variable's or a list of such objects
  • *_ts: torch.Tensor's or a list of such objects
  • otherwise: normal python datatypes

Dependencies


How to run:

You only need to modify some parameters in ./utils/options.py to train a new configuration.

  • Configure your training in ./utils/options.py:
  • line 12: add an entry into CONFIGS to define your training (agent_type, env_type, game, circuit_type)
  • line 28: choose the entry you just added
  • line 24-25: fill in your machine/cluster ID (MACHINE) and timestamp (TIMESTAMP) to define your training signature (MACHINE_TIMESTAMP), the corresponding model file and the log file of this training will be saved under this signature (./models/MACHINE_TIMESTAMP.pth & ./logs/MACHINE_TIMESTAMP.log respectively). Also the visdom visualization will be displayed under this signature (first activate the visdom server by type in bash: python -m visdom.server &, then open this address in your browser: http://localhost:8097/env/MACHINE_TIMESTAMP)
  • line 28: to train a model, set mode=1 (training visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP); to test the model of this current training, all you need to do is to set mode=2 (testing visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP_test).
  • Run:

python main.py


Implementation Notes:

The difference between NTM & DNC is stated as follows in the DNC[2] paper:

Comparison with the neural Turing machine. The neural Turing machine (NTM) was the predecessor to the DNC described in this work. It used a similar architecture of neural network controller with read–write access to a memory matrix, but differed in the access mechanism used to interface with the memory. In the NTM, content-based addressing was combined with location-based addressing to allow the network to iterate through memory locations in order of their indices (for example, location n followed by n+1 and so on). This allowed the network to store and retrieve temporal sequences in contiguous blocks of memory. However, there were several drawbacks. First, the NTM has no mechanism to ensure that blocks of allocated memory do not overlap and interfere—a basic problem of computer memory management. Interference is not an issue for the dynamic memory allocation used by DNCs, which provides single free locations at a time, irrespective of index, and therefore does not require contiguous blocks. Second, the NTM has no way of freeing locations that have already been written to and, hence, no way of reusing memory when processing long sequences. This problem is addressed in DNCs by the free gates used for de-allocation. Third, sequential information is preserved only as long as the NTM continues to iterate through consecutive locations; as soon as the write head jumps to a different part of the memory (using content-based addressing) the order of writes before and after the jump cannot be recovered by the read head. The temporal link matrix used by DNCs does not suffer from this problem because it tracks the order in which writes were made.

We thus make some effort to put those two together in a combined codebase. The classes implemented have the following hierarchy:

  • Agent
    • Env
    • Circuit
      • Controller
      • Accessor
        • WriteHead
        • ReadHead
        • Memory

The part where NTM & DNC differs is the Accessor, where in the code NTM uses the StaticAccessor(may not be an appropriate name but we use this to make the code more consistent) and DNC uses the DynamicAccessor. Both Accessor classes use _content_focus() and _location_focus()(may not be an appropriate name for DNC but we use this to make the code more consistent). The _content_focus() is the same for both classes, but the _location_focus() for DNC is much more complicated as it uses dynamic allocation additionally for write and temporal link additionally for read. Those focus (or attention) mechanisms are implemented in Head classes, and those focuses output a weight vector for each head (write/read). Those weight vectors are then used in _access() to interact with the external memory.

A side note:

The sturcture for Env might look strange as this class was originally designed for reinforcement learning settings as in pytorch-rl; here we use it for providing datasets for supervised learning, so the reward, action and terminal are always left blank in this repo.


Repos we referred to during the development of this repo:


The following paper might be interesting to take a look:)

Neural SLAM: We present an approach for agents to learn representations of a global map from sensor data, to aid their exploration in new environments. To achieve this, we embed procedures mimicking that of traditional Simultaneous Localization and Mapping (SLAM) into the soft attention based addressing of external memory architectures, in which the external memory acts as an internal representation of the environment. This structure encourages the evolution of SLAM-like behaviors inside a completely differentiable deep neural network. We show that this approach can help reinforcement learning agents to successfully explore new environments where long-term memory is essential. We validate our approach in both challenging grid-world environments and preliminary Gazebo experiments. A video of our experiments can be found at: \url{https://goo.gl/RfiSxo}.

@article{zhang2017neural,
  title={Neural SLAM},
  author={Zhang, Jingwei and Tai, Lei and Boedecker, Joschka and Burgard, Wolfram and Liu, Ming},
  journal={arXiv preprint arXiv:1706.09520},
  year={2017}
}


Citation

If you find this library useful and would like to cite it, the following would be appropriate:

@misc{pytorch-dnc,
  author = {Zhang, Jingwei},
  title = {jingweiz/pytorch-dnc},
  url = {https://github.com/jingweiz/pytorch-dnc},
  year = {2017}
}
Owner
Jingwei Zhang
Jingwei Zhang
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022