Bridging Vision and Language Model

Related tags

Deep LearningBriVL
Overview

BriVL

BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。

BriVL论文:WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training

适用场景

适用场景示例:图像检索文本、文本检索图像、图像标注、图像零样本分类、作为其他下游多模态任务的输入特征等。

技术特色

  1. BriVL使用对比学习算法将图像和文本映射到了同一特征空间,可用于弥补图像特征和文本特征之间存在的隔阂。
  2. 基于视觉-语言弱相关的假设,除了能理解对图像的描述性文本外,也可以捕捉图像和文本之间存在的抽象联系。
  3. 图像编码器和文本编码器可分别独立运行,有利于实际生产环境中的部署。

下载专区

模型 语言 参数量(单位:亿) 文件(file)
BriVL-1.0 中文 10亿 BriVL-1.0-5500w.tar

使用BriVL

搭建环境

# 环境要求
lmdb==0.99
timm==0.4.12
easydict==1.9
pandas==1.2.4
jsonlines==2.0.0
tqdm==4.60.0
torchvision==0.9.1
numpy==1.20.2
torch==1.8.1
transformers==4.5.1
msgpack_numpy==0.4.7.1
msgpack_python==0.5.6
Pillow==8.3.1
PyYAML==5.4.1

配置要求在requirements.txt中,可使用下面的命令:

pip install -r requirements.txt

特征提取与计算检索结果

cd evaluation/
bash test_xyb.sh

数据解释

现已放入3个图文对示例:

./data/imgs  # 放入图像
./data/jsonls # 放入图文对描述

引用BriVL

@article{DBLP:journals/corr/abs-2103-06561,
  author    = {Yuqi Huo and
               Manli Zhang and
               Guangzhen Liu and
               Haoyu Lu and
               Yizhao Gao and
               Guoxing Yang and
               Jingyuan Wen and
               Heng Zhang and
               Baogui Xu and
               Weihao Zheng and
               Zongzheng Xi and
               Yueqian Yang and
               Anwen Hu and
               Jinming Zhao and
               Ruichen Li and
               Yida Zhao and
               Liang Zhang and
               Yuqing Song and
               Xin Hong and
               Wanqing Cui and
               Dan Yang Hou and
               Yingyan Li and
               Junyi Li and
               Peiyu Liu and
               Zheng Gong and
               Chuhao Jin and
               Yuchong Sun and
               Shizhe Chen and
               Zhiwu Lu and
               Zhicheng Dou and
               Qin Jin and
               Yanyan Lan and
               Wayne Xin Zhao and
               Ruihua Song and
               Ji{-}Rong Wen},
  title     = {WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training},
  journal   = {CoRR},
  volume    = {abs/2103.06561},
  year      = {2021},
  url       = {https://arxiv.org/abs/2103.06561},
  archivePrefix = {arXiv},
  eprint    = {2103.06561},
  timestamp = {Tue, 03 Aug 2021 12:35:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2103-06561.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
Wudao is a large-scale pre-training model project initiated by BAAI, aiming to break through the core technology and promote the development of AGI.
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022