JMESPath is a query language for JSON.

Overview

JMESPath

https://travis-ci.org/jmespath/jmespath.py.svg?branch=develop https://codecov.io/github/jmespath/jmespath.py/coverage.svg?branch=develop

JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document.

For example, given this document:

{"foo": {"bar": "baz"}}

The jmespath expression foo.bar will return "baz".

JMESPath also supports:

Referencing elements in a list. Given the data:

{"foo": {"bar": ["one", "two"]}}

The expression: foo.bar[0] will return "one". You can also reference all the items in a list using the * syntax:

{"foo": {"bar": [{"name": "one"}, {"name": "two"}]}}

The expression: foo.bar[*].name will return ["one", "two"]. Negative indexing is also supported (-1 refers to the last element in the list). Given the data above, the expression foo.bar[-1].name will return "two".

The * can also be used for hash types:

{"foo": {"bar": {"name": "one"}, "baz": {"name": "two"}}}

The expression: foo.*.name will return ["one", "two"].

Installation

You can install JMESPath from pypi with:

pip install jmespath

API

The jmespath.py library has two functions that operate on python data structures. You can use search and give it the jmespath expression and the data:

>>> import jmespath
>>> path = jmespath.search('foo.bar', {'foo': {'bar': 'baz'}})
'baz'

Similar to the re module, you can use the compile function to compile the JMESPath expression and use this parsed expression to perform repeated searches:

>>> import jmespath
>>> expression = jmespath.compile('foo.bar')
>>> expression.search({'foo': {'bar': 'baz'}})
'baz'
>>> expression.search({'foo': {'bar': 'other'}})
'other'

This is useful if you're going to use the same jmespath expression to search multiple documents. This avoids having to reparse the JMESPath expression each time you search a new document.

Options

You can provide an instance of jmespath.Options to control how a JMESPath expression is evaluated. The most common scenario for using an Options instance is if you want to have ordered output of your dict keys. To do this you can use either of these options:

>>> import jmespath
>>> jmespath.search('{a: a, b: b}',
...                 mydata,
...                 jmespath.Options(dict_cls=collections.OrderedDict))


>>> import jmespath
>>> parsed = jmespath.compile('{a: a, b: b}')
>>> parsed.search(mydata,
...               jmespath.Options(dict_cls=collections.OrderedDict))

Custom Functions

The JMESPath language has numerous built-in functions, but it is also possible to add your own custom functions. Keep in mind that custom function support in jmespath.py is experimental and the API may change based on feedback.

If you have a custom function that you've found useful, consider submitting it to jmespath.site and propose that it be added to the JMESPath language. You can submit proposals here.

To create custom functions:

  • Create a subclass of jmespath.functions.Functions.
  • Create a method with the name _func_<your function name>.
  • Apply the jmespath.functions.signature decorator that indicates the expected types of the function arguments.
  • Provide an instance of your subclass in a jmespath.Options object.

Below are a few examples:

import jmespath
from jmespath import functions

# 1. Create a subclass of functions.Functions.
#    The function.Functions base class has logic
#    that introspects all of its methods and automatically
#    registers your custom functions in its function table.
class CustomFunctions(functions.Functions):

    # 2 and 3.  Create a function that starts with _func_
    # and decorate it with @signature which indicates its
    # expected types.
    # In this example, we're creating a jmespath function
    # called "unique_letters" that accepts a single argument
    # with an expected type "string".
    @functions.signature({'types': ['string']})
    def _func_unique_letters(self, s):
        # Given a string s, return a sorted
        # string of unique letters: 'ccbbadd' ->  'abcd'
        return ''.join(sorted(set(s)))

    # Here's another example.  This is creating
    # a jmespath function called "my_add" that expects
    # two arguments, both of which should be of type number.
    @functions.signature({'types': ['number']}, {'types': ['number']})
    def _func_my_add(self, x, y):
        return x + y

# 4. Provide an instance of your subclass in a Options object.
options = jmespath.Options(custom_functions=CustomFunctions())

# Provide this value to jmespath.search:
# This will print 3
print(
    jmespath.search(
        'my_add(`1`, `2`)', {}, options=options)
)

# This will print "abcd"
print(
    jmespath.search(
        'foo.bar | unique_letters(@)',
        {'foo': {'bar': 'ccbbadd'}},
        options=options)
)

Again, if you come up with useful functions that you think make sense in the JMESPath language (and make sense to implement in all JMESPath libraries, not just python), please let us know at jmespath.site.

Specification

If you'd like to learn more about the JMESPath language, you can check out the JMESPath tutorial. Also check out the JMESPath examples page for examples of more complex jmespath queries.

The grammar is specified using ABNF, as described in RFC4234. You can find the most up to date grammar for JMESPath here.

You can read the full JMESPath specification here.

Testing

In addition to the unit tests for the jmespath modules, there is a tests/compliance directory that contains .json files with test cases. This allows other implementations to verify they are producing the correct output. Each json file is grouped by feature.

Discuss

Join us on our Gitter channel if you want to chat or if you have any questions.

Loudchecker - Python script to check files for earrape

loudchecker python script to check files for earrape automatically installs depe

1 Jan 22, 2022
Dynamic Resume Generator

Dynamic Resume Generator

Quinten Lisowe 15 May 19, 2022
Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD.

freecad-pyoptools Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD. Requirements It req

Combustión Ingenieros SAS 12 Nov 16, 2022
Data science on SDGs - Udemy Online Course Material: Data Science on Sustainable Development Goals

Data Science on Sustainable Development Goals (SDGs) Udemy Online Course Material: Data Science on Sustainable Development Goals https://bit.ly/data_s

Frank Kienle 1 Jan 04, 2022
Literate-style documentation generator.

888888b. 888 Y88b 888 888 888 d88P 888 888 .d8888b .d8888b .d88b. 8888888P" 888 888 d88P" d88P" d88""88b 888 888 888

Pycco 808 Dec 27, 2022
Proyecto - Desgaste y rendimiento de empleados de IBM HR Analytics

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Links de acceso: Noteb

1 Jan 31, 2022
This tutorial will guide you through the process of self-hosting Polygon

Hosting guide This tutorial will guide you through the process of self-hosting Polygon Before starting Make sure you have the following tools installe

Polygon 2 Jan 31, 2022
FxBuzzly - Buzzly.art links do not embed in Discord, this fixes them (rudimentarily)

fxBuzzly Buzzly.art links do not embed in Discord, this fixes them (rudimentaril

Dania Rifki 2 Oct 27, 2022
Explain yourself! Interrogate a codebase for docstring coverage.

interrogate: explain yourself Interrogate a codebase for docstring coverage. Why Do I Need This? interrogate checks your code base for missing docstri

Lynn Root 435 Dec 29, 2022
Generate YARA rules for OOXML documents using ZIP local header metadata.

apooxml Generate YARA rules for OOXML documents using ZIP local header metadata. To learn more about this tool and the methodology behind it, check ou

MANDIANT 34 Jan 26, 2022
Searches a document for hash tags. Support multiple natural languages. Works in various contexts.

ht-getter Searches a document for hash tags. Supports multiple natural languages. Works in various contexts. This package uses a non-regex approach an

Rairye 1 Mar 01, 2022
A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

AnnotateChange Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data

The Alan Turing Institute 16 Jul 21, 2022
Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software.

Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software. We organize webinars and workshops on different technical topics and making Open Source contributi

Mozilla-Campus-Club-Cummins 8 Jun 15, 2022
Near Zero-Overhead Python Code Coverage

Slipcover: Near Zero-Overhead Python Code Coverage by Juan Altmayer Pizzorno and Emery Berger at UMass Amherst's PLASMA lab. About Slipcover Slipcover

PLASMA @ UMass 325 Dec 28, 2022
Some of the best ways and practices of doing code in Python!

Pythonicness ❤ This repository contains some of the best ways and practices of doing code in Python! Features Properly formatted codes (PEP 8) for bet

Samyak Jain 2 Jan 15, 2022
💻An open-source eBook with 101 Linux commands that everyone should know

This is an open-source eBook with 101 Linux commands that everyone should know. No matter if you are a DevOps/SysOps engineer, developer, or just a Linux enthusiast, you will most likely have to use

Ashfaque Ahmed 0 Oct 29, 2022
30 Days of google cloud leaderboard website

30 Days of Cloud Leaderboard This is a leaderboard for the students of Thapar, Patiala who are participating in the 2021 30 days of Google Cloud Platf

Developer Student Clubs TIET 13 Aug 25, 2022
Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

Adrian Samoticha 2 Nov 23, 2021
Fast, efficient Blowfish cipher implementation in pure Python (3.4+).

blowfish This module implements the Blowfish cipher using only Python (3.4+). Blowfish is a block cipher that can be used for symmetric-key encryption

Jashandeep Sohi 41 Dec 31, 2022
LotteryBuyPredictionWebApp - Lottery Purchase Prediction Model

Lottery Purchase Prediction Model Objective and Goal Predict the lottery type th

Wanxuan Zhang 2 Feb 14, 2022