GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Overview

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Trying to publish a new machine learning model and can't write a decent title for your paper?
Are all of your titles just sequences of 10 keywords?
Jealous of the cool kids with their sweet paper names like "ALBERT" and "ELMo"?
Well look no further, GRaNDPapA will take whatever buzzwords you want in the title and make a cool Acronym out of it.

Examples:

  • GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms
  • LaSAgNe Clustering: Language Space Agnostic News Clustering
  • SeAtBeLT: Sentence Attention for Bert Label Transformers
  • ReCUsAntS: Rejuvenation of Cells Using Ant Saliva

Usage:

  1. Install python 3
  2. Clone this repository
  3. Run python3 main.py
  4. Input the set of keywords you want in your acronym

Extra parameters:

Preserve word order: If true, will only create acronyms that maintain the provided word order.
Warning: If false, pay attention to the exponential growth of the number of possible permutations for longer lists of words.

Force use of all words: If true, will ensure all words are used in the Acronym.
Warning: There is a known bug that sometimes acronyms can be generated that are missing the last word.

Implementation details:

For efficiency, a tree is constructed to represent all the words in the English language.
Each word string will represent a path down this tree and will end in a node labeled as "final" if the word exists.
Each node keeps track of all outgoing letters that lead to possible words from that point.
When the document words are introduced, this tree is intersected with the tree of possible acronyms for those words.
At each node, only outgoing nodes that follow the rules of the Acronym generation are maintained.
Paths down this intersected tree to final nodes are words that exist in the English language and are valid acronyms for the given words.

Credits

Developed for Priberam Labs
List of all English words by dwyl

Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022