Learn how to responsibly deliver value with ML.

Overview

 Made With ML

Applied ML Β· MLOps Β· Production
Join 30K+ developers in learning how to responsibly deliver value with ML.

     
πŸ”₯   Among the top MLOps repositories on GitHub


Foundations

Learn the foundations of ML through intuitive explanations, clean code and visuals.

πŸ›    Toolkit πŸ”₯   Machine Learning πŸ€–   Deep Learning
Notebooks Linear Regression CNNs
Python Logistic Regression Embeddings
NumPy Neural Network RNNs
Pandas Data Quality Attention
PyTorch Utilities Transformers

πŸ“†   More topics coming soon!
Subscribe for our monthly updates on new content.


MLOps

Learn how to apply ML to build a production grade product to deliver value.

πŸ“¦   Product πŸ“   Scripting ♻️   Reproducibility
Objective Organization Git
Solution Packaging Pre-commit
Iteration Documentation Versioning
πŸ”’   Data Styling Docker
Labeling Makefile πŸš€   Production
Preprocessing Logging Dashboard
Exploratory data analysis πŸ“¦   Interfaces CI/CD workflows
Splitting Command-line Infrastructure
Augmentation RESTful API Monitoring
πŸ“ˆ   Modeling βœ…   Testing Feature store
Evaluation Code Pipelines
Experiment tracking Data Continual learning
Optimization Models

πŸ“†   New lessons every month!
Subscribe for our monthly updates on new content.


FAQ

Who is this content for?

  • Software engineers looking to learn ML and become even better software engineers.
  • Data scientists who want to learn how to responsibly deliver value with ML.
  • College graduates looking to learn the practical skills they'll need for the industry.
  • Product Managers who want to develop a technical foundation for ML applications.

What is the structure?

Lessons will be released weekly and each one will include:

  • intuition: high level overview of the concepts that will be covered and how it all fits together.
  • code: simple code examples to illustrate the concept.
  • application: applying the concept to our specific task.
  • extensions: brief look at other tools and techniques that will be useful for difference situations.

What makes this content unique?

  • hands-on: If you search production ML or MLOps online, you'll find great blog posts and tweets. But in order to really understand these concepts, you need to implement them. Unfortunately, you don’t see a lot of the inner workings of running production ML because of scale, proprietary content & expensive tools. However, Made With ML is free, open and live which makes it a perfect learning opportunity for the community.
  • intuition-first: We will never jump straight to code. In every lesson, we will develop intuition for the concepts and think about it from a product perspective.
  • software engineering: This course isn't just about ML. In fact, it's mostly about clean software engineering! We'll cover important concepts like versioning, testing, logging, etc. that really makes something production-grade product.
  • focused yet holistic: For every concept, we'll not only cover what's most important for our specific task (this is the case study aspect) but we'll also cover related methods (this is the guide aspect) which may prove to be useful in other situations.

Who is the author?

  • I've deployed large scale ML systems at Apple as well as smaller systems with constraints at startups and want to share the common principles I've learned.
  • Connect with me on Twitter and LinkedIn

Why is this free?

While this content is for everyone, it's especially targeted towards people who don't have as much opportunity to learn. I believe that creativity and intelligence are randomly distributed while opportunities are siloed. I want to enable more people to create and contribute to innovation.


To cite this content, please use:
@misc{madewithml,
    author       = {Goku Mohandas},
    title        = {Made With ML},
    howpublished = {\url{https://madewithml.com/}},
    year         = {2021}
}
Owner
Goku Mohandas
Founder @madewithml. AI Research @apple. Author @oreillymedia. ML Lead @Ciitizen. Alum @hopkinsmedicine and @gatech
Goku Mohandas
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023