The official github repository for Towards Continual Knowledge Learning of Language Models

Overview

Towards Continual Knowledge Learning of Language Models

This is the official github repository for Towards Continual Knowledge Learning of Language Models.

In order to reproduce our results, take the following steps:

1. Create conda environment and install requirements

conda create -n ckl python=3.8 && conda activate ckl
pip install -r requirements.txt

Also, make sure to install the correct version of pytorch corresponding to the CUDA version and environment: Refer to https://pytorch.org/

#For CUDA 10.x
pip3 install torch torchvision torchaudio
#For CUDA 11.x
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

2. Download the data used for the experiments.

To download only the CKL benchmark dataset:

python download_ckl_data.py

To download ALL of the data used for the experiments (required to reproduce results):

python download_all_data.py

To download the (continually pretrained) model checkpoints of the main experiment (required to reproduce results):

python download_model_checkpoints.py

For the other experimental settings such as multiple CKL phases, GPT-2, we do not separately provide the continually pretrained model checkpoints.

3. Reproducing Experimental Results

We provide all the configs in order to reproduce the zero-shot results of our paper. We only provide the model checkpoints for the main experimental setting (full_setting) which can be downloaded with the command above.

configs
├── full_setting
│   ├── evaluation
│   |   ├── invariantLAMA
│   |   |   ├── t5_baseline.json
│   |   |   ├── t5_kadapters.json
│   |   |   ├── ...
│   |   ├── newLAMA
│   |   ├── newLAMA_easy
│   |   ├── updatedLAMA
│   ├── training
│   |   ├── t5_baseline.json
│   |   ├── t5_kadapters.json
│   |   ├── ...
├── GPT2
│   ├── ...
├── kilt
│   ├── ...
├── small_setting
│   ├── ...
├── split
│   ├── ...                    

Components in each configurations file

  • input_length (int) : the input sequence length
  • output_length (int) : the output sequence length
  • num_train_epochs (int) : number of training epochs
  • output_dir (string) : the directory to save the model checkpoints
  • dataset (string) : the dataset to perform zero-shot evaluation or continual pretraining
  • dataset_version (string) : the version of the dataset ['full', 'small', 'debug']
  • train_batch_size (int) : batch size used for training
  • learning rate (float) : learning rate used for training
  • model (string) : model name in huggingface models (https://huggingface.co/models)
  • method (string) : method being used ['baseline', 'kadapter', 'lora', 'mixreview', 'modular_small', 'recadam']
  • freeze_level (int) : how much of the model to freeze during traininig (0 for none, 1 for freezing only encoder, 2 for freezing all of the parameters)
  • gradient_accumulation_steps (int) : gradient accumulation used to match the global training batch of each method
  • ngpu (int) : number of gpus used for the run
  • num_workers (int) : number of workers for the Dataloader
  • resume_from_checkpoint (string) : null by default. directory to model checkpoint if resuming from checkpoint
  • accelerator (string) : 'ddp' by default. the pytorch lightning accelerator to be used.
  • use_deepspeed (bool) : false by default. Currently not extensively tested.
  • CUDA_VISIBLE_DEVICES (string) : gpu devices that are made available for this run (e.g. "0,1,2,3", "0")
  • wandb_log (bool) : whether to log experiment through wandb
  • wandb_project (string) : project name of wandb
  • wandb_run_name (string) : the name of this training run
  • mode (string) : 'pretrain' for all configs
  • use_lr_scheduling (bool) : true if using learning rate scheduling
  • check_validation (bool) : true for evaluation (no training)
  • checkpoint_path (string) : path to the model checkpoint that is used for evaluation
  • output_log (string) : directory to log evaluation results to
  • split_num (int) : default is 1. more than 1 if there are multile CKL phases
  • split (int) : which CKL phase it is

This is an example of getting the invariantLAMA zero-shot evaluation of continually pretrained t5_kadapters

python run.py --config configs/full_setting/evaluation/invariantLAMA/t5_kadapters.json

This is an example of performing continual pretraining on CC-RecentNews (main experiment) with t5_kadapters

python run.py --config configs/full_setting/training/t5_kadapters.json

Reference

@article{jang2021towards,
  title={Towards Continual Knowledge Learning of Language Models},
  author={Jang, Joel and Ye, Seonghyeon and Yang, Sohee and Shin, Joongbo and Han, Janghoon and Kim, Gyeonghun and Choi, Stanley Jungkyu and Seo, Minjoon},
  journal={arXiv preprint arXiv:2110.03215},
  year={2021}
}
Owner
Joel Jang | 장요엘
Aspiring NLP researcher and a MS student at the Graduate School of AI, KAIST advised by Minjoon Seo
Joel Jang | 장요엘
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023