DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

Overview

ChemRxiv | [Paper] XXX

DeepStruc

Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and thereby solves a structure from a PDF!

  1. DeepStruc
  2. Getting started (with Colab)
  3. Getting started (own computer)
    1. Install requirements
    2. Simulate data
    3. Train model
    4. Predict
  4. Author
  5. Cite
  6. Acknowledgments
  7. License

We here apply DeepStruc for the structural analysis of a model system of mono-metallic nanoparticle (MMNPs) with seven different structure types and demonstrate the method for both simulated and experimental PDFs. DeepStruc can reconstruct simulated data with an average mean absolute error (MAE) of the atom xyz-coordinates on 0.093 ± 0.058 Å after fitting a contraction/extraction factor, an ADP and a scale parameter. We demonstrate the generative capability of DeepStruc on a dataset of face-centered cubic (fcc), hexagonal closed packed (hcp) and stacking faulted structures, where DeepStruc can recognize the stacking faulted structures as an interpolation between fcc and hcp and construct new structural models based on a PDF. The MAE is in this example 0.030 ± 0.019 Å.

The MMNPs are provided as a graph-based input to the encoder of DeepStruc. We compare DeepStruc with a similar DGM without the graph-based encoder. DeepStruc is able to reconstruct the structures using a smaller dimension of the latent space thus having a better generative capabillity. We also compare DeepStruc with a brute-force modelling approach and a tree-based classification algorithm. The ML models are significantly faster than the brute-force approach, but DeepStruc can furthermore create a latent space from where synthetic structures can be sampled which the tree-based method cannot! The baseline models can be found in other repositories: brute-force, MetalFinder and CVAE. alt text

Getting started (with Colab)

Using DeepStruc on your own PDFs is straightforward and does not require anything installed or downloaded to your computer. Follow the instructions in our Colab notebook and try to play around.

Getting started (own computer)

Follow these step if you want to train DeepStruc and predict with DeepStruc locally on your own computer.

Install requirements

See the install folder.

Simulate data

See the data folder.

Train model

To train your own DeepStruc model simply run:

python train.py

A list of possible arguments or run the '--help' argument for additional information.
If you are intersted in changing the architecture of the model go to train.py and change the model_arch dictionary.

Arg Description Example
-h or --help Prints help message.
-d or --data_dir Directory containing graph training, validation and test data. str -d ./data/graphs
-s or --save_dir Directory where models will be saved. This is also used for loading a learner. str -s bst_model
-r or --resume_model If 'True' the save_dir model is loaded and training is continued. bool -r True
-e or --epochs Number of maximum epochs. int -e 100
-b or --batch_size Number of graphs in each batch. int -b 20
-l or --learning_rate Learning rate. float -l 1e-4
-B or --beta Initial beta value for scaling KLD. float -B 0.1
-i or --beta_increase Increments of beta when the threshold is met. float -i 0.1
-x or --beta_max Highst value beta can increase to. float -x 5
-t or --reconstruction_th Reconstruction threshold required before beta is increased. float -t 0.001
-n or --num_files Total number of files loaded. Files will be split 60/20/20. If 'None' then all files are loaded. int -n 500
-c or --compute Train model on CPU or GPU. Choices: 'cpu', 'gpu16', 'gpu32' and 'gpu64'. str -c gpu32
-L or --latent_dim Number of latent space dimensions. int -L 3

Predict

To predict a MMNP using DeepStruc or your own model on a PDF:

python predict.py

A list of possible arguments or run the '--help' argument for additional information.

Arg Description Example
-h or --help Prints help message.
-d or --data Path to data or data directory. If pointing to data directory all datasets must have same format. str -d data/experimental_PDFs/JQ_S1.gr
-m or --model Path to model. If 'None' GUI will open. str -m ./models/DeepStruc
-n or --num_samples Number of samples/structures generated for each unique PDF. int -n 10
-s or --sigma Sample to '-s' sigma in the normal distribution. float -s 7
-p or --plot_sampling Plots sampled structures on top of DeepStruc training data. Model must be DeepStruc. bool -p True
-g or --save_path Path to directory where predictions will be saved. bool -g ./best_preds
-i or --index_plot Highlights specific reconstruction in the latent space. --data must be specific file and not directory and '--plot True'. int -i 4
-P or --plot_data If True then the first loaded PDF is plotted and shown after normalization. bool -P ./best_preds

Authors

Andy S. Anker1
Emil T. S. Kjær1
Marcus N. Weng1
Simon J. L. Billinge2, 3
Raghavendra Selvan4, 5
Kirsten M. Ø. Jensen1

1 Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
2 Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA.
3 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
4 Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
5 Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N.

Should there be any question, desired improvement or bugs please contact us on GitHub or through email: [email protected] or [email protected].

Cite

If you use our code or our results, please consider citing our papers. Thanks in advance!

@article{kjær2022DeepStruc,
title={DeepStruc: Towards structure solution from pair distribution function data using deep generative models},
author={Emil T. S. Kjær, Andy S. Anker, Marcus N. Weng, Simon J. L. Billinge, Raghavendra Selvan, Kirsten M. Ø. Jensen},
year={2022}}
@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

Acknowledgments

Our code is developed based on the the following publication:

@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

License

This project is licensed under the Apache License Version 2.0, January 2004 - see the LICENSE file for details.

Owner
Emil Thyge Skaaning Kjær
Ph.D student in nanoscience at the University of Copenhagen.
Emil Thyge Skaaning Kjær
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022