ProMP: Proximal Meta-Policy Search

Overview

Build Status Docs

ProMP: Proximal Meta-Policy Search

Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches:

  1. master: lightweight branch that provides the necessary code to run Meta-RL algorithms such as ProMP, E-MAML, MAML. This branch is meant to provide an easy start with Meta-RL and can be integrated into other projects and setups.
  2. full-code: branch that provides the comprehensive code that was used to produce the experimental results in Rothfuss et al. (2018). This includes experiment scripts and plotting scripts that can be used to reproduce the experimental results in the paper.

The code is written in Python 3 and builds on Tensorflow. Many of the provided reinforcement learning environments require the Mujoco physics engine. Overall the code was developed under consideration of modularity and computational efficiency. Many components of the Meta-RL algorithm are parallelized either using either MPI or Tensorflow in order to ensure efficient use of all CPU cores.

Documentation

An API specification and explanation of the code components can be found here. Also the documentation can be build locally by running the following commands

# ensure that you are in the root folder of the project
cd docs
# install the sphinx documentaiton tool dependencies
pip install requirements.txt
# build the documentaiton
make clean && make html
# now the html documentation can be found under docs/build/html/index.html

Installation / Dependencies

The provided code can be either run in A) docker container provided by us or B) using python on your local machine. The latter requires multiple installation steps in order to setup dependencies.

A. Docker

If not installed yet, set up docker on your machine. Pull our docker container jonasrothfuss/promp from docker-hub:

docker pull jonasrothfuss/promp

All the necessary dependencies are already installed inside the docker container.

B. Anaconda or Virtualenv

B.1. Installing MPI

Ensure that you have a working MPI implementation (see here for more instructions).

For Ubuntu you can install MPI through the package manager:

sudo apt-get install libopenmpi-dev
B.2. Create either venv or conda environment and activate it
Virtualenv
pip install --upgrade virtualenv
virtualenv 
   
    
source 
    
     /bin/activate

    
   
Anaconda

If not done yet, install anaconda by following the instructions here. Then reate a anaconda environment, activate it and install the requirements in requirements.txt.

conda create -n 
   
     python=3.6
source activate 
    

    
   
B.3. Install the required python dependencies
pip install -r requirements.txt
B.4. Set up the Mujoco physics engine and mujoco-py

For running the majority of the provided Meta-RL environments, the Mujoco physics engine as well as a corresponding python wrapper are required. For setting up Mujoco and mujoco-py, please follow the instructions here.

Running ProMP

In order to run the ProMP algorithm point environment (no Mujoco needed) with default configurations execute:

python run_scripts/pro-mp_run_point_mass.py 

To run the ProMP algorithm in a Mujoco environment with default configurations:

python run_scripts/pro-mp_run_mujoco.py 

The run configuration can be change either in the run script directly or by providing a JSON configuration file with all the necessary hyperparameters. A JSON configuration file can be provided through the flag. Additionally the dump path can be specified through the dump_path flag:

python run_scripts/pro-mp_run.py --config_file 
   
     --dump_path 
    

    
   

Additionally, in order to run the the gradient-based meta-learning methods MAML and E-MAML (Finn et. al., 2017 and Stadie et. al., 2018) in a Mujoco environment with the default configuration execute, respectively:

python run_scripts/maml_run_mujoco.py 
python run_scripts/e-maml_run_mujoco.py 

Cite

To cite ProMP please use

@article{rothfuss2018promp,
  title={ProMP: Proximal Meta-Policy Search},
  author={Rothfuss, Jonas and Lee, Dennis and Clavera, Ignasi and Asfour, Tamim and Abbeel, Pieter},
  journal={arXiv preprint arXiv:1810.06784},
  year={2018}
}

Acknowledgements

This repository includes environments introduced in (Duan et al., 2016, Finn et al., 2017).

Owner
Jonas Rothfuss
Doctoral researcher - Institute of Machine Learning (ETH Zurich) Research emphasis on meta-learning and reinforcement learning
Jonas Rothfuss
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023