A Kitti Road Segmentation model implemented in tensorflow.

Overview

KittiSeg

KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark at submission time. Check out our paper for a detailed model description.

The model is designed to perform well on small datasets. The training is done using just 250 densely labelled images. Despite this a state-of-the art MaxF1 score of over 96% is achieved. The model is usable for real-time application. Inference can be performed at the impressive speed of 95ms per image.

The repository contains code for training, evaluating and visualizing semantic segmentation in TensorFlow. It is build to be compatible with the TensorVision back end which allows to organize experiments in a very clean way. Also check out KittiBox a similar projects to perform state-of-the art detection. And finally the MultiNet repository contains code to jointly train segmentation, classification and detection. KittiSeg and KittiBox are utilized as submodules in MultiNet.

Requirements

The code requires Tensorflow 1.0, python 2.7 as well as the following python libraries:

  • matplotlib
  • numpy
  • Pillow
  • scipy
  • commentjson

Those modules can be installed using: pip install numpy scipy pillow matplotlib commentjson or pip install -r requirements.txt.

Setup

  1. Clone this repository: git clone https://github.com/MarvinTeichmann/KittiSeg.git
  2. Initialize all submodules: git submodule update --init --recursive
  3. [Optional] Download Kitti Road Data:
    1. Retrieve kitti data url here: http://www.cvlibs.net/download.php?file=data_road.zip
    2. Call python download_data.py --kitti_url URL_YOU_RETRIEVED

Running the model using demo.py does not require you to download kitti data (step 3). Step 3 is only required if you want to train your own model using train.py or bench a model agains the official evaluation score evaluate.py. Also note, that I recommend using download_data.py instead of downloading the data yourself. The script will also extract and prepare the data. See Section Manage data storage if you like to control where the data is stored.

To update an existing installation do:
  1. Pull all patches: git pull
  2. Update all submodules: git submodule update --init --recursive

If you forget the second step you might end up with an inconstant repository state. You will already have the new code for KittiSeg but run it old submodule versions code. This can work, but I do not run any tests to verify this.

Tutorial

Getting started

Run: python demo.py --input_image data/demo/demo.png to obtain a prediction using demo.png as input.

Run: python evaluate.py to evaluate a trained model.

Run: python train.py --hypes hypes/KittiSeg.json to train a model using Kitti Data.

If you like to understand the code, I would recommend looking at demo.py first. I have documented each step as thoroughly as possible in this file.

Manage Data Storage

KittiSeg allows to separate data storage from code. This is very useful in many server environments. By default, the data is stored in the folder KittiSeg/DATA and the output of runs in KittiSeg/RUNS. This behaviour can be changed by setting the bash environment variables: $TV_DIR_DATA and $TV_DIR_RUNS.

Include export TV_DIR_DATA="/MY/LARGE/HDD/DATA" in your .profile and the all data will be downloaded to /MY/LARGE/HDD/DATA/data_road. Include export TV_DIR_RUNS="/MY/LARGE/HDD/RUNS" in your .profile and all runs will be saved to /MY/LARGE/HDD/RUNS/KittiSeg

RUNDIR and Experiment Organization

KittiSeg helps you to organize large number of experiments. To do so the output of each run is stored in its own rundir. Each rundir contains:

  • output.log a copy of the training output which was printed to your screen
  • tensorflow events tensorboard can be run in rundir
  • tensorflow checkpoints the trained model can be loaded from rundir
  • [dir] images a folder containing example output images. image_iter controls how often the whole validation set is dumped
  • [dir] model_files A copy of all source code need to build the model. This can be very useful of you have many versions of the model.

To keep track of all the experiments, you can give each rundir a unique name with the --name flag. The --project flag will store the run in a separate subfolder allowing to run different series of experiments. As an example, python train.py --project batch_size_bench --name size_5 will use the following dir as rundir: $TV_DIR_RUNS/KittiSeg/batch_size_bench/size_5_KittiSeg_2017_02_08_13.12.

The flag --nosave is very useful to not spam your rundir.

Modifying Model & Train on your own data

The model is controlled by the file hypes/KittiSeg.json. Modifying this file should be enough to train the model on your own data and adjust the architecture according to your needs. A description of the expected input format can be found here.

For advanced modifications, the code is controlled by 5 different modules, which are specified in hypes/KittiSeg.json.

"model": {
   "input_file": "../inputs/kitti_seg_input.py",
   "architecture_file" : "../encoder/fcn8_vgg.py",
   "objective_file" : "../decoder/kitti_multiloss.py",
   "optimizer_file" : "../optimizer/generic_optimizer.py",
   "evaluator_file" : "../evals/kitti_eval.py"
},

Those modules operate independently. This allows easy experiments with different datasets (input_file), encoder networks (architecture_file), etc. Also see TensorVision for a specification of each of those files.

Utilize TensorVision backend

KittiSeg is build on top of the TensorVision TensorVision backend. TensorVision modularizes computer vision training and helps organizing experiments.

To utilize the entire TensorVision functionality install it using

$ cd KittiSeg/submodules/TensorVision
$ python setup.py install

Now you can use the TensorVision command line tools, which includes:

tv-train --hypes hypes/KittiSeg.json trains a json model.
tv-continue --logdir PATH/TO/RUNDIR trains the model in RUNDIR, starting from the last saved checkpoint. Can be used for fine tuning by increasing max_steps in model_files/hypes.json .
tv-analyze --logdir PATH/TO/RUNDIR evaluates the model in RUNDIR

Useful Flags & Variabels

Here are some Flags which will be useful when working with KittiSeg and TensorVision. All flags are available across all scripts.

--hypes : specify which hype-file to use
--logdir : specify which logdir to use
--gpus : specify on which GPUs to run the code
--name : assign a name to the run
--project : assign a project to the run
--nosave : debug run, logdir will be set to debug

In addition the following TensorVision environment Variables will be useful:

$TV_DIR_DATA: specify meta directory for data
$TV_DIR_RUNS: specify meta directory for output
$TV_USE_GPUS: specify default GPU behaviour.

On a cluster it is useful to set $TV_USE_GPUS=force. This will make the flag --gpus mandatory and ensure, that run will be executed on the right GPU.

Questions?

Please have a look into the FAQ. Also feel free to open an issue to discuss any questions not covered so far.

Citation

If you benefit from this code, please cite our paper:

@article{teichmann2016multinet,
  title={MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving},
  author={Teichmann, Marvin and Weber, Michael and Zoellner, Marius and Cipolla, Roberto and Urtasun, Raquel},
  journal={arXiv preprint arXiv:1612.07695},
  year={2016}
}
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022