A study project using the AA-RMVSNet to reconstruct buildings from multiple images

Overview

3d-building-reconstruction

This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images.

Introduction

It is exciting to connect the 2D world with 3D world using Multi-view Stereo(MVS) methods. In this project, we aim to reconstruct several architecture in our campus. Since it's outdoor reconstruction, We chose to use AA-RMVSNet to do this work for its marvelous performance is outdoor datasets after comparing some similar models such as CasMVSNet and D2HC-RMVSNet. The code is retrieved from here with some modification.

Reproduction

Here we summarize the main steps we took when doing this project. You can reproduce our result after these steps.

Installation

First, you need to create a virtual environment and install the necessary dependencies.

conda create -n test python=3.6
conda activate test
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge py-opencv plyfile tensorboardx

Other cuda versions can be found here

Struct from Motion

Camera parameters are required to conduct the MVSNet based methods. Please first download the open source software COLMAP.

The workflow is as follow:

  1. Open the COLMAP, then successively click reconstruction-Automatic reconstruction options.
  2. Select your Workspace folder and Image folder.
  3. (Optional) Unclick Dense model to accelerate the reconstruction procedure.
  4. Click Run.
  5. After the completion of reconstruction, you should be able to see the result of sparse reconstruction as well as position of cameras.(Fig )
  6. Click File - Export model as text. There should be a camera.txt in the output folder, each line represent a photo. In case there are photos that remain mismatched, you should dele these photos and rematch. Repeat this process until all the photos are mathced.
  7. Move the there txts to the sparse folder.

img

AA-RMVSNet

To use AA-RMVSNet to reconstruct the building, please follow the steps listed below.

  1. Clone this repository to a local folder.

  2. The custom testing folder should be placed in the root directory of the cloned folder. This folder should have to subfolders names images and sparse. The images folder is meant to place the photos, and the sparse folder should have the three txt files recording the camera's parameters.

  3. Find the file list-dtu-test.txt, and write the name of the folder which you wish to be tested.

  4. Run colmap2mvsnet.py by

    python ./sfm/colmap2mvsnet.py --dense_folder name --interval_scale 1.06 --max_d 512
    

    The parameter dense_folder is compulsory, others being optional. You can also change the default value in the following shells.

  5. When you get the result of the previous step, run the following commands

    sh ./scripts/eval_dtu.sh
    sh ./scripts/fusion_dtu.sh
    
  6. Then you are should see the output .ply files in the outputs_dtu folder.

Here dtu means the data is organized in the format of DTU dataset.

Results

We reconstructed various spot of out campus. The reconstructed point cloud files is available here (Code: nz1e). You can visualize the file with Meshlab or CloudCompare .

The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022