Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Overview

Clockwork VAEs in JAX/Flax

Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported from the official TensorFlow implementation.

Running on a single TPU v3, training is 10x faster than reported in the paper (60h -> 6h on minerl).

Method

Clockwork VAEs are deep generative model that learn long-term dependencies in video by leveraging hierarchies of representations that progress at different clock speeds. In contrast to prior video prediction methods that typically focus on predicting sharp but short sequences in the future, Clockwork VAEs can accurately predict high-level content, such as object positions and identities, for 1000 frames.

Clockwork VAEs build upon the Recurrent State Space Model (RSSM), so each state contains a deterministic component for long-term memory and a stochastic component for sampling diverse plausible futures. Clockwork VAEs are trained end-to-end to optimize the evidence lower bound (ELBO) that consists of a reconstruction term for each image and a KL regularizer for each stochastic variable in the model.

Instructions

This repository contains the code for training the Clockwork VAE model on the datasets minerl, mazes, and mmnist.

The datasets will automatically be downloaded into the --datadir directory.

python3 train.py --logdir /path/to/logdir --datadir /path/to/datasets --config configs/<dataset>.yml 

The evaluation script writes open-loop video predictions in both PNG and NPZ format and plots of PSNR and SSIM to the data directory.

python3 eval.py --logdir /path/to/logdir

Known differences from the original

  • Flax' default kernel initializer, layer precision and GRU implementation (avoiding redundant biases) are used.
  • For some configuration parameters, only the defaults are implemented.
  • Training metrics and videos are logged with wandb.
  • The base configuration is in config.py.

Added features:

  • This implementation runs on TPU out-of-the-box.
  • Apart from the config file, configuration can be done via command line and wandb.
  • Matching the seed of a previous run will exactly repeat it.

Things to watch out for

Replication of paper results for the mazes dataset has not been confirmed yet.

Getting evaluation metrics is a memory bottleneck during training, due to the large eval_seq_len. If you run out of device memory, consider lowering it during training, for example to 100. Remember to pass in the original value to eval.py to get unchanged results.

Acknowledgements

Thanks to Vaibhav Saxena and Danijar Hafner for helpful discussions and to Jamie Townsend for reviewing code.

Owner
Julius Kunze
Let's create helpful intelligent machines.
Julius Kunze
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022