[email protected]) | PythonRepo" /> [email protected]) | PythonRepo">

This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

Overview

GP-VAE

This repository provides datasets and code for preprocessing, training and testing models for the paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors
Wanyu Du, Jianqiao Zhao, Liwei Wang and Yangfeng Ji
ACL 2022 6th Workshop on Structured Prediction for NLP

image

Installation

The following command installs all necessary packages:

pip install -r requirements.txt

The project was tested using Python 3.6.6.

Datasets

  1. Twitter URL includes trn/val/tst.tsv, which has the following format in each line:
source_sentence \t reference_sentence 
  1. GYAFC has two sub-domains em and fr, please request and download the data from the original paper here.

Models

Training

Train the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task train --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001

where --data_file indicates the data path for the training data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Train the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task train --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 

where --data_file indicates the data path for the training data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Inference

Test the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task decode --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001 \
			   --decode_from sample \
			   --model_file /path/to/best/checkpoint

where --data_file indicates the data path for the testing data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--decode_from indicates generating results conditioning on z_mean or randomly sampled z, including mean/sample.

Test the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task eval --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 \
    			   --from_mean \
    			   --timestamp '2021-02-14-04-57-04' \
    			   --ckpt '30000' # load best checkpoint

where --data_file indicates the data path for the testing data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--from_mean indicates whether to generate results conditioning on z_mean or randomly sampled z,
--timestamp and --ckpt indicate the file path for the best checkpoint.

Citation

If you find this work useful for your research, please cite our paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors

@inproceedings{du2022gpvae,
    title = "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors",
    author = "Du, Wanyu and Zhao, Jianqiao and Wang, Liwei and Ji, Yangfeng",
    booktitle = "Proceedings of the 6th Workshop on Structured Prediction for NLP (SPNLP 2022)",
    year = "2022",
    publisher = "Association for Computational Linguistics",
}
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022