A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Overview

MCILBoost

Project | CVPR Paper | MIA Paper
Contact: Jun-Yan Zhu (junyanz at cs dot cmu dot edu)

Overview

This is the authors' implementation of MCIL-Boost method described in:
[1] Multiple Clustered Instance Learning for Histopathology Cancer Image Segmentation, Clustering, and Classification.
Yan Xu*, Jun-Yan Zhu*, Eric Chang, and Zhuowen Tu (*equal contribution)
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[2] Weakly Supervised Histopathology Cancer Image Segmentation and Classification
Yan Xu, Jun-Yan Zhu, Eric I-Chao Chang, Maode Lai, and Zhuowen Tu
In Medical Image Analysis, 2014.

Please cite our papers if you use our code for your research.

This package consists of the following two multiple-instance learning (MIL) methods:

  • MIL-Boost [Viola et al. 2006]: set c = 1
  • MCIL-Boost [1] [2]: set c > 1

The core of this package is a command-line interface written in C++. Various Matlab helper functions are provided to help users easily train/test MCIL-Boost model, perform cross-validation, and evaluate the performance.

System Requirement

  • Linux and Windows.
  • For Linux, the code is compiled by gcc 4.8.2 under Ubuntu 14.04.

Installation

  • Download and unzip the code.
    • For Linux users, type "chmod +x MCILBoost".
  • Open Matlab and run "demoToy.m".
  • To use the command-line interface, see "Command Usage".
  • To use Matlab functions, see "Matlab helper functions"; You can modify "SetParamsToy.m" and "demoToy.m" to run your own experiments.

Quick Examples

(Windows: MCILBoost.exe; Linux: ./MCILBoost)
An example for training:
MCILBoost.exe -v 2 -t 0 -c 2 -n 150 -s 0 -r 20 toy.data toy.model
An example for testing:
MCILBoost.exe -v 2 -t 1 -c 2 toy.data toy.model toy.result

Command Usage ([ ]: options)

MCILBoost.exe [-v verbose] [-t mode] [-c #clusters] [-n #weakClfs] [-s softmax] data_file model_file [result_file] (No need to specifiy c, n, s, r for test as the program will copy these parameters from the model_file)

-v verbose: shows details about the runtime output (default = 1) 0 -- no output 1 -- some output 2 -- more output

-t mode: set the training mode (default=0) 0 -- train a model 1 -- test a model

-c #clusters: set the number of clusters in positive bags (default = 1) c = 1 -- train a MIL-Boost model c > 1 -- train a MCIL-Boost model with multiple clusters

-n #weakClfs: set the maximum number of weak classifiers (default = 150)

-s softmax: set the softmax type: (default s = 0) 0 -- GM 1 -- LSE

-r exponent: set the exponent used in GM and LSE (default r = 20)

data_file: set the path for input data.

model_file: set the path for the model file.

result_file: set the path for result file. If result_file is not specified, result_file = data_file + '.result'

Matlab helper functions

  • MCILBoost.m: main entry function: model training/testing, and cross-validation.
  • SetParams.m: Set parameters for MCILBoost.m. You need to modify this file to run your own experiment.
  • TrainModel.m: train a model, call MCIL-Boost command line.
  • TestModel.m: test a model, call MCIL-Boost command line.
  • CrossValidate.m: split the data into n-fold, perform n-fold cross-validation, and report performance.
  • ReadData.m: read Matlab data from a text file.
  • WriteData.m: write Matlab data to a text file.
  • ReadResult.m: read Matlab result data from a text file.
  • MeasureResult.m: evaluate performance in terms of accuracy and auc (area under the curve).
  • AUC: compute the area under ROC curve given prediction and ground truth labels.
  • demoToy.m: demo script for toy data.
  • SetParamsToy.m: set parameters for demoToy.
  • demo1.m: demo script for Fox, Tiger, Elephant experiment.
  • SetParamsDemo1.m: set parameters for demo1.
  • demo2.m: demo script for SIVAL experiment.
  • SetParamsDemo2.m: set parameters for demo2.

Summary of Benchmark Results

  • I provide two scripts for running experiments on publicly available MIL benchmarks.
    • "demo1.m": experiments on Fox, Tiger, Elephant dataset.
      The MIL-Boost achieved 0.61 (Fox), 0.81 (Tiger), 0.82 (Elephant) on 10-fold cross-validation over 10 runs.
    • "demo2.m": experiments on SIVAL dataset. There are 180 positive bags (3 clusters), and 180 negative bags. While multiple clusters appear in positive bags, MCIL-Boost works better than MIL-Boost does.
      MIL-Boost (c=1): mean_acc = 0.742, mean_auc = 0.824
      MCIL-Boost (c=3): mean_acc = 0.879, mean_auc = 0.944
  • Note: See "demo1.m" and "demo2.m" for details.

Input Format

  • Note: You can use Matlab function "ReadData.m" and "WriteData.m" to read/write Matlab data from/to the text file.
  • Description: the input format is similar to the format used in LIBSVM and MILL package. The software also supports a sparse format. In the first line, you first need to specify the number of all instances, and the number of feature dimensions. Each line represents one instance, which has an instance id, bag id, and the label id (>= 1 for positive bags, and 0 for negative bags). Each feature value is represented as a : pair where is the index of the feature (starting from 1)
  • Format:
    : : : : ...
    : : : : ...
  • Example: A toy example that contains two negative bags and two positive bags. (see "toy.data") The negative instance is always (0, 0, 0) while there are two clusters of positive instances (0, 1, 0) and (0, 0, 1)
    8 3
    0:0:0 1:0 2:0 3:0
    1:0:0 1:0 2:0 3:0
    2:1:0 1:0 2:0 3:0
    3:1:0 1:0 2:0 3:0
    4:2:1 1:0 2:1 3:0
    5:2:1 1:0 2:0 3:0
    6:3:1 1:0 2:0 3:1
    7:3:1 1:0 2:0 3:0

Output Format

  • Note: You can use Matlab function "ReadResult.m" to load the Matlab data from the result file.

  • Description: The software outputs four kinds of predictions (see more details in the paper):

    • overall bag-level prediction p_i (the probability of the bag x_i being positive bag)
    • cluster-wise bag-level prediction p_i^k (the probability of the bag x_i belonging to k-th cluster)
    • overall instance-level prediction p_{ij} (the probability of the instance x_{ij} being positive instance)
    • cluster-wise instance-level prediction p_{ij}^k (the probability of the instance x_{ij} belonging to the k-th cluster)
    • In the first line, the software outputs the number of bags, and the number of clusters. Then for each bag, the software outputs the bag-level information and prediction (bag id, number of instances, ground truth label, number of clusters, and p_i).The software also outputs the bag-level prediction for each cluster (cluster id and prediction p_i^k for each cluster). Then for each instance, the software outputs the instance-level prediction (instance id and prediction p_{ij}) and instance-level prediction for each cluster (cluster_id and prediction p_{ij}^k)
  • Format:
    #bag= #cluster=
    bag_id= #insts= label= #cluster= pred=
    cluster_id= pred= cluster_id= pred= ...
    inst_id= pred= cluster_id= pred= cluster_id= pred= inst_id= pred= cluster_id= pred= cluster_id= pred= ...
    ...

  • Example: The output of the toy example:
    #bags=4 #clusters=2
    bag_id=0 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=1 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=2 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=0 pred=1 cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=3 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=0 pred=1 cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0

    Credit

    Part of this code is based on the work by Piotr Dollar and Boris Babenko.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022