A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Overview

MCILBoost

Project | CVPR Paper | MIA Paper
Contact: Jun-Yan Zhu (junyanz at cs dot cmu dot edu)

Overview

This is the authors' implementation of MCIL-Boost method described in:
[1] Multiple Clustered Instance Learning for Histopathology Cancer Image Segmentation, Clustering, and Classification.
Yan Xu*, Jun-Yan Zhu*, Eric Chang, and Zhuowen Tu (*equal contribution)
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[2] Weakly Supervised Histopathology Cancer Image Segmentation and Classification
Yan Xu, Jun-Yan Zhu, Eric I-Chao Chang, Maode Lai, and Zhuowen Tu
In Medical Image Analysis, 2014.

Please cite our papers if you use our code for your research.

This package consists of the following two multiple-instance learning (MIL) methods:

  • MIL-Boost [Viola et al. 2006]: set c = 1
  • MCIL-Boost [1] [2]: set c > 1

The core of this package is a command-line interface written in C++. Various Matlab helper functions are provided to help users easily train/test MCIL-Boost model, perform cross-validation, and evaluate the performance.

System Requirement

  • Linux and Windows.
  • For Linux, the code is compiled by gcc 4.8.2 under Ubuntu 14.04.

Installation

  • Download and unzip the code.
    • For Linux users, type "chmod +x MCILBoost".
  • Open Matlab and run "demoToy.m".
  • To use the command-line interface, see "Command Usage".
  • To use Matlab functions, see "Matlab helper functions"; You can modify "SetParamsToy.m" and "demoToy.m" to run your own experiments.

Quick Examples

(Windows: MCILBoost.exe; Linux: ./MCILBoost)
An example for training:
MCILBoost.exe -v 2 -t 0 -c 2 -n 150 -s 0 -r 20 toy.data toy.model
An example for testing:
MCILBoost.exe -v 2 -t 1 -c 2 toy.data toy.model toy.result

Command Usage ([ ]: options)

MCILBoost.exe [-v verbose] [-t mode] [-c #clusters] [-n #weakClfs] [-s softmax] data_file model_file [result_file] (No need to specifiy c, n, s, r for test as the program will copy these parameters from the model_file)

-v verbose: shows details about the runtime output (default = 1) 0 -- no output 1 -- some output 2 -- more output

-t mode: set the training mode (default=0) 0 -- train a model 1 -- test a model

-c #clusters: set the number of clusters in positive bags (default = 1) c = 1 -- train a MIL-Boost model c > 1 -- train a MCIL-Boost model with multiple clusters

-n #weakClfs: set the maximum number of weak classifiers (default = 150)

-s softmax: set the softmax type: (default s = 0) 0 -- GM 1 -- LSE

-r exponent: set the exponent used in GM and LSE (default r = 20)

data_file: set the path for input data.

model_file: set the path for the model file.

result_file: set the path for result file. If result_file is not specified, result_file = data_file + '.result'

Matlab helper functions

  • MCILBoost.m: main entry function: model training/testing, and cross-validation.
  • SetParams.m: Set parameters for MCILBoost.m. You need to modify this file to run your own experiment.
  • TrainModel.m: train a model, call MCIL-Boost command line.
  • TestModel.m: test a model, call MCIL-Boost command line.
  • CrossValidate.m: split the data into n-fold, perform n-fold cross-validation, and report performance.
  • ReadData.m: read Matlab data from a text file.
  • WriteData.m: write Matlab data to a text file.
  • ReadResult.m: read Matlab result data from a text file.
  • MeasureResult.m: evaluate performance in terms of accuracy and auc (area under the curve).
  • AUC: compute the area under ROC curve given prediction and ground truth labels.
  • demoToy.m: demo script for toy data.
  • SetParamsToy.m: set parameters for demoToy.
  • demo1.m: demo script for Fox, Tiger, Elephant experiment.
  • SetParamsDemo1.m: set parameters for demo1.
  • demo2.m: demo script for SIVAL experiment.
  • SetParamsDemo2.m: set parameters for demo2.

Summary of Benchmark Results

  • I provide two scripts for running experiments on publicly available MIL benchmarks.
    • "demo1.m": experiments on Fox, Tiger, Elephant dataset.
      The MIL-Boost achieved 0.61 (Fox), 0.81 (Tiger), 0.82 (Elephant) on 10-fold cross-validation over 10 runs.
    • "demo2.m": experiments on SIVAL dataset. There are 180 positive bags (3 clusters), and 180 negative bags. While multiple clusters appear in positive bags, MCIL-Boost works better than MIL-Boost does.
      MIL-Boost (c=1): mean_acc = 0.742, mean_auc = 0.824
      MCIL-Boost (c=3): mean_acc = 0.879, mean_auc = 0.944
  • Note: See "demo1.m" and "demo2.m" for details.

Input Format

  • Note: You can use Matlab function "ReadData.m" and "WriteData.m" to read/write Matlab data from/to the text file.
  • Description: the input format is similar to the format used in LIBSVM and MILL package. The software also supports a sparse format. In the first line, you first need to specify the number of all instances, and the number of feature dimensions. Each line represents one instance, which has an instance id, bag id, and the label id (>= 1 for positive bags, and 0 for negative bags). Each feature value is represented as a : pair where is the index of the feature (starting from 1)
  • Format:
    : : : : ...
    : : : : ...
  • Example: A toy example that contains two negative bags and two positive bags. (see "toy.data") The negative instance is always (0, 0, 0) while there are two clusters of positive instances (0, 1, 0) and (0, 0, 1)
    8 3
    0:0:0 1:0 2:0 3:0
    1:0:0 1:0 2:0 3:0
    2:1:0 1:0 2:0 3:0
    3:1:0 1:0 2:0 3:0
    4:2:1 1:0 2:1 3:0
    5:2:1 1:0 2:0 3:0
    6:3:1 1:0 2:0 3:1
    7:3:1 1:0 2:0 3:0

Output Format

  • Note: You can use Matlab function "ReadResult.m" to load the Matlab data from the result file.

  • Description: The software outputs four kinds of predictions (see more details in the paper):

    • overall bag-level prediction p_i (the probability of the bag x_i being positive bag)
    • cluster-wise bag-level prediction p_i^k (the probability of the bag x_i belonging to k-th cluster)
    • overall instance-level prediction p_{ij} (the probability of the instance x_{ij} being positive instance)
    • cluster-wise instance-level prediction p_{ij}^k (the probability of the instance x_{ij} belonging to the k-th cluster)
    • In the first line, the software outputs the number of bags, and the number of clusters. Then for each bag, the software outputs the bag-level information and prediction (bag id, number of instances, ground truth label, number of clusters, and p_i).The software also outputs the bag-level prediction for each cluster (cluster id and prediction p_i^k for each cluster). Then for each instance, the software outputs the instance-level prediction (instance id and prediction p_{ij}) and instance-level prediction for each cluster (cluster_id and prediction p_{ij}^k)
  • Format:
    #bag= #cluster=
    bag_id= #insts= label= #cluster= pred=
    cluster_id= pred= cluster_id= pred= ...
    inst_id= pred= cluster_id= pred= cluster_id= pred= inst_id= pred= cluster_id= pred= cluster_id= pred= ...
    ...

  • Example: The output of the toy example:
    #bags=4 #clusters=2
    bag_id=0 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=1 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=2 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=0 pred=1 cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=3 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=0 pred=1 cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0

    Credit

    Part of this code is based on the work by Piotr Dollar and Boris Babenko.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022