This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Overview

Amortized Assimilation

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the time the forecast is initialized. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce effective estimation schemes. We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations with no need for ground truth data. We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.

Installation

Requirements

This code can be memory heavy as each experiment unrolls at least 40 assimilation steps (which from a memory perspective is equivalent to a 40x deeper network plus whatever is needed for the simulation). Current settings are optimized to max out memory usage on a GTX1070 GPU. The easiest ways to tune memory usage are network width and ensemble size. Checkpointing could significantly improve memory utilization but is not currently implemented.

To install the dependencies, use the provided requirements.txt file:

pip install -r requirements.txt 

There is also a dependency on torchdiffeq. Instructions for installing torchdiffeq can be found at https://github.com/rtqichen/torchdiffeq, but are also copied below:

pip install git+https://github.com/rtqichen/torchdiffeq

To run the DA comparison models, you will need to install DAPPER. Instructions can be found here: https://github.com/nansencenter/DAPPER.

Installing this package

A setup.py file has been included for installation. Navigate to the home folder and run:

pip install -e . 

Run experiments

All experiments can be run from experiments/run_*.py. Default settings are those used in the paper. First navigate to the experiments directory then execute:

L96 Full Observations

python run_L96Conv.py --obs_conf full_obs

L96 Partial Observations (every fourth).

python run_L96Conv.py --obs_conf every_4th_dim_partial_obs

VL20 Partial

python run_VLConv.py --obs_conf every_4th_dim_partial_obs

KS Full

python run_KS.py 

Other modifications of interest might be to adjust the step size for the integrator (--step_size, default .1), observation error(--noise, default 1.), ensemble size (--m, default 10), or network width (--hidden_size, default 64 for conv). The L96 code also includes options for self-supervised and supervised analysis losses (ss_analysis, clean_analysis) used for creating Figure 6 from the paper. Custom observation operators can be created in the same style as those found in obs_configs.py.

Parameters for traditional DA approaches were tuned via grid search over smaller sequences. Those hyperparameters were then used for longer assimilation sequences.

To test a new architecture, you'll want to ensure it's obeying the same API as the models in models.py, but otherwise it should slot in without major issues.

Datasets

Code is included for generating the Lorenz 96, VL 20 and KS datasets. This can be found under amortized_assimilation/data_utils.py

References

DAPPER: Raanes, P. N., & others. (2018). nansencenter/DAPPER: Version 0.8. https://doi.org/10.5281/zenodo.2029296

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1835825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


If you found the code or ideas in this repository useful, please consider citing:

@article{mccabe2021l2assim,
  title={Learning to Assimilate in Chaotic Dynamical Systems},
  author={McCabe, Michael and Brown, Jed},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022