PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

Overview

PatchGame: Learning to Signal Mid-level Patches in Referential Games

This repository is the official implementation of the paper - "PatchGame: Learning to SignalMid-level Patches in Referential Games"

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n patchgame python=3.8
conda activate patchgame

We recommend installing the latest pytorch and torchvision packages You can install them using

conda install pytorch torchvision -c pytorch

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Installing torchsort

Note we only tried installing torchsort with following cuda==10.2.89 and gcc==6.3.0.

export TORCH_CUDA_ARCH_LIST="Pascal;Volta;Turing"
unzip torchsort.zip && cd torchsort
python setup.py install --user
cd .. && rm -rf torchsort

Dataset

We use ImageNet-1k (ILSVRC2012) data in all our experiments. Please download and save the data from the official website.

Training

To train the model(s) in the paper on 1-8 GPUs, run this command (where nproc_per_node is the number of gpus):

python -m torch.distributed.launch --nproc_per_node=1 train.py \
    --data_path /patch/to/imagenet/dir/train \
    --output_dir /path/to/checkpoint/dir \
    --patch_size 32 --epochs 100

Pre-trained Models

You can download pretrained models here trained on ImageNet using parameters using above command (and default hyperparameters).

Evaluation

PatchRank with ViT

python eval_patchrank.py --patch-model mymodel.pth --data-path <path to dataset> --topk <no. of patches to use>

This achieves the following accuracy on ImageNet.

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32, topk=75, size=384x384) 58.4% 80.9%

k-NN classification ImageNet with listener's vision module

python -m torch.distributed.launch --nproc_per_node=1 eval_knn.py \
    --pretrained_weights /path/to/checkpoint/dir/checkpoint.pth \
    --arch resnet18 --nb_knn 20 \
    --batch_size_per_gpu 1024 --use_cuda 0 \
    --data_path /patch/to/imagenet/dir

This achieves the following accuracy on ImageNet

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32) 30.3% 49.9%

Acknowledgements

We would like to thank several public repos from where we borrowed various utilities

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022