Pytorch implementation of FlowNet by Dosovitskiy et al.

Overview

FlowNetPytorch

Pytorch implementation of FlowNet by Dosovitskiy et al.

This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et al. in PyTorch. See Torch implementation here

This code is mainly inspired from official imagenet example. It has not been tested for multiple GPU, but it should work just as in original code.

The code provides a training example, using the flying chair dataset , with data augmentation. An implementation for Scene Flow Datasets may be added in the future.

Two neural network models are currently provided, along with their batch norm variation (experimental) :

  • FlowNetS
  • FlowNetSBN
  • FlowNetC
  • FlowNetCBN

Pretrained Models

Thanks to Kaixhin you can download a pretrained version of FlowNetS (from caffe, not from pytorch) here. This folder also contains trained networks from scratch.

Note on networks loading

Directly feed the downloaded Network to the script, you don't need to uncompress it even if your desktop environment tells you so.

Note on networks from caffe

These networks expect a BGR input (compared to RGB in pytorch). However, BGR order is not very important.

Prerequisite

these modules can be installed with pip

pytorch >= 1.2
tensorboard-pytorch
tensorboardX >= 1.4
spatial-correlation-sampler>=0.2.1
imageio
argparse
path.py

or

pip install -r requirements.txt

Training on Flying Chair Dataset

First, you need to download the the flying chair dataset . It is ~64GB big and we recommend you put it in a SSD Drive.

Default HyperParameters provided in main.py are the same as in the caffe training scripts.

  • Example usage for FlowNetS :
python main.py /path/to/flying_chairs/ -b8 -j8 -a flownets

We recommend you set j (number of data threads) to high if you use DataAugmentation as to avoid data loading to slow the training.

For further help you can type

python main.py -h

Visualizing training

Tensorboard-pytorch is used for logging. To visualize result, simply type

tensorboard --logdir=/path/to/checkoints

Training results

Models can be downloaded here in the pytorch folder.

Models were trained with default options unless specified. Color warping was not used.

Arch learning rate batch size epoch size filename validation EPE
FlowNetS 1e-4 8 2700 flownets_EPE1.951.pth.tar 1.951
FlowNetS BN 1e-3 32 695 flownets_bn_EPE2.459.pth.tar 2.459
FlowNetC 1e-4 8 2700 flownetc_EPE1.766.pth.tar 1.766

Note : FlowNetS BN took longer to train and got worse results. It is strongly advised not to you use it for Flying Chairs dataset.

Validation samples

Prediction are made by FlowNetS.

Exact code for Optical Flow -> Color map can be found here

Input prediction GroundTruth

Running inference on a set of image pairs

If you need to run the network on your images, you can download a pretrained network here and launch the inference script on your folder of image pairs.

Your folder needs to have all the images pairs in the same location, with the name pattern

{image_name}1.{ext}
{image_name}2.{ext}
python3 run_inference.py /path/to/images/folder /path/to/pretrained

As for the main.py script, a help menu is available for additional options.

Note on transform functions

In order to have coherent transformations between inputs and target, we must define new transformations that take both input and target, as a new random variable is defined each time a random transformation is called.

Flow Transformations

To allow data augmentation, we have considered rotation and translations for inputs and their result on target flow Map. Here is a set of things to take care of in order to achieve a proper data augmentation

The Flow Map is directly linked to img1

If you apply a transformation on img1, you have to apply the very same to Flow Map, to get coherent origin points for flow.

Translation between img1 and img2

Given a translation (tx,ty) applied on img2, we will have

flow[:,:,0] += tx
flow[:,:,1] += ty

Scale

A scale applied on both img1 and img2 with a zoom parameters alpha multiplies the flow by the same amount

flow *= alpha

Rotation applied on both images

A rotation applied on both images by an angle theta also rotates flow vectors (flow[i,j]) by the same angle

\for_all i,j flow[i,j] = rotate(flow[i,j], theta)

rotate: x,y,theta ->  (x*cos(theta)-x*sin(theta), y*cos(theta), x*sin(theta))

Rotation applied on img2

Let us consider a rotation by the angle theta from the image center.

We must tranform each flow vector based on the coordinates where it lands. On each coordinate (i, j), we have:

flow[i, j, 0] += (cos(theta) - 1) * (j  - w/2 + flow[i, j, 0]) +    sin(theta)    * (i - h/2 + flow[i, j, 1])
flow[i, j, 1] +=   -sin(theta)    * (j  - w/2 + flow[i, j, 0]) + (cos(theta) - 1) * (i - h/2 + flow[i, j, 1])
Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022