Pytorch implementation of FlowNet by Dosovitskiy et al.

Overview

FlowNetPytorch

Pytorch implementation of FlowNet by Dosovitskiy et al.

This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et al. in PyTorch. See Torch implementation here

This code is mainly inspired from official imagenet example. It has not been tested for multiple GPU, but it should work just as in original code.

The code provides a training example, using the flying chair dataset , with data augmentation. An implementation for Scene Flow Datasets may be added in the future.

Two neural network models are currently provided, along with their batch norm variation (experimental) :

  • FlowNetS
  • FlowNetSBN
  • FlowNetC
  • FlowNetCBN

Pretrained Models

Thanks to Kaixhin you can download a pretrained version of FlowNetS (from caffe, not from pytorch) here. This folder also contains trained networks from scratch.

Note on networks loading

Directly feed the downloaded Network to the script, you don't need to uncompress it even if your desktop environment tells you so.

Note on networks from caffe

These networks expect a BGR input (compared to RGB in pytorch). However, BGR order is not very important.

Prerequisite

these modules can be installed with pip

pytorch >= 1.2
tensorboard-pytorch
tensorboardX >= 1.4
spatial-correlation-sampler>=0.2.1
imageio
argparse
path.py

or

pip install -r requirements.txt

Training on Flying Chair Dataset

First, you need to download the the flying chair dataset . It is ~64GB big and we recommend you put it in a SSD Drive.

Default HyperParameters provided in main.py are the same as in the caffe training scripts.

  • Example usage for FlowNetS :
python main.py /path/to/flying_chairs/ -b8 -j8 -a flownets

We recommend you set j (number of data threads) to high if you use DataAugmentation as to avoid data loading to slow the training.

For further help you can type

python main.py -h

Visualizing training

Tensorboard-pytorch is used for logging. To visualize result, simply type

tensorboard --logdir=/path/to/checkoints

Training results

Models can be downloaded here in the pytorch folder.

Models were trained with default options unless specified. Color warping was not used.

Arch learning rate batch size epoch size filename validation EPE
FlowNetS 1e-4 8 2700 flownets_EPE1.951.pth.tar 1.951
FlowNetS BN 1e-3 32 695 flownets_bn_EPE2.459.pth.tar 2.459
FlowNetC 1e-4 8 2700 flownetc_EPE1.766.pth.tar 1.766

Note : FlowNetS BN took longer to train and got worse results. It is strongly advised not to you use it for Flying Chairs dataset.

Validation samples

Prediction are made by FlowNetS.

Exact code for Optical Flow -> Color map can be found here

Input prediction GroundTruth

Running inference on a set of image pairs

If you need to run the network on your images, you can download a pretrained network here and launch the inference script on your folder of image pairs.

Your folder needs to have all the images pairs in the same location, with the name pattern

{image_name}1.{ext}
{image_name}2.{ext}
python3 run_inference.py /path/to/images/folder /path/to/pretrained

As for the main.py script, a help menu is available for additional options.

Note on transform functions

In order to have coherent transformations between inputs and target, we must define new transformations that take both input and target, as a new random variable is defined each time a random transformation is called.

Flow Transformations

To allow data augmentation, we have considered rotation and translations for inputs and their result on target flow Map. Here is a set of things to take care of in order to achieve a proper data augmentation

The Flow Map is directly linked to img1

If you apply a transformation on img1, you have to apply the very same to Flow Map, to get coherent origin points for flow.

Translation between img1 and img2

Given a translation (tx,ty) applied on img2, we will have

flow[:,:,0] += tx
flow[:,:,1] += ty

Scale

A scale applied on both img1 and img2 with a zoom parameters alpha multiplies the flow by the same amount

flow *= alpha

Rotation applied on both images

A rotation applied on both images by an angle theta also rotates flow vectors (flow[i,j]) by the same angle

\for_all i,j flow[i,j] = rotate(flow[i,j], theta)

rotate: x,y,theta ->  (x*cos(theta)-x*sin(theta), y*cos(theta), x*sin(theta))

Rotation applied on img2

Let us consider a rotation by the angle theta from the image center.

We must tranform each flow vector based on the coordinates where it lands. On each coordinate (i, j), we have:

flow[i, j, 0] += (cos(theta) - 1) * (j  - w/2 + flow[i, j, 0]) +    sin(theta)    * (i - h/2 + flow[i, j, 1])
flow[i, j, 1] +=   -sin(theta)    * (j  - w/2 + flow[i, j, 0]) + (cos(theta) - 1) * (i - h/2 + flow[i, j, 1])
Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022