PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

Overview

PatchGame: Learning to Signal Mid-level Patches in Referential Games

This repository is the official implementation of the paper - "PatchGame: Learning to SignalMid-level Patches in Referential Games"

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n patchgame python=3.8
conda activate patchgame

We recommend installing the latest pytorch and torchvision packages You can install them using

conda install pytorch torchvision -c pytorch

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Installing torchsort

Note we only tried installing torchsort with following cuda==10.2.89 and gcc==6.3.0.

export TORCH_CUDA_ARCH_LIST="Pascal;Volta;Turing"
unzip torchsort.zip && cd torchsort
python setup.py install --user
cd .. && rm -rf torchsort

Dataset

We use ImageNet-1k (ILSVRC2012) data in all our experiments. Please download and save the data from the official website.

Training

To train the model(s) in the paper on 1-8 GPUs, run this command (where nproc_per_node is the number of gpus):

python -m torch.distributed.launch --nproc_per_node=1 train.py \
    --data_path /patch/to/imagenet/dir/train \
    --output_dir /path/to/checkpoint/dir \
    --patch_size 32 --epochs 100

Pre-trained Models

You can download pretrained models here trained on ImageNet using parameters using above command (and default hyperparameters).

Evaluation

PatchRank with ViT

python eval_patchrank.py --patch-model mymodel.pth --data-path <path to dataset> --topk <no. of patches to use>

This achieves the following accuracy on ImageNet.

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32, topk=75, size=384x384) 58.4% 80.9%

k-NN classification ImageNet with listener's vision module

python -m torch.distributed.launch --nproc_per_node=1 eval_knn.py \
    --pretrained_weights /path/to/checkpoint/dir/checkpoint.pth \
    --arch resnet18 --nb_knn 20 \
    --batch_size_per_gpu 1024 --use_cuda 0 \
    --data_path /patch/to/imagenet/dir

This achieves the following accuracy on ImageNet

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32) 30.3% 49.9%

Acknowledgements

We would like to thank several public repos from where we borrowed various utilities

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022