Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Overview

Cross-framework Python Package for Evaluation of Latent-based Generative Models

Documentation Status CircleCI codecov CodeFactor License PyPI version DOI arXiv

Latte

Latte (for LATent Tensor Evaluation) is a cross-framework Python package for evaluation of latent-based generative models. Latte supports calculation of disentanglement and controllability metrics in both PyTorch (via TorchMetrics) and TensorFlow.

Installation

For developers working on local clone, cd to the repo and replace latte with .. For example, pip install .[tests]

pip install latte-metrics           # core (numpy only)
pip install latte-metrics[pytorch]  # with torchmetrics wrapper
pip install latte-metrics[keras]    # with tensorflow wrapper
pip install latte-metrics[tests]    # for testing

Running tests locally

pip install .[tests]
pytest tests/ --cov=latte

Example

Functional API

import latte
from latte.functional.disentanglement.mutual_info import mig
import numpy as np

latte.seed(42)

z = np.random.randn(16, 8)
a = np.random.randn(16, 2)

mutual_info_gap = mig(z, a, discrete=False, reg_dim=[4, 3])

Modular API

import latte
from latte.metrics.core.disentanglement import MutualInformationGap
import numpy as np

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.compute()

TorchMetrics API

import latte
from latte.metrics.torch.disentanglement import MutualInformationGap
import torch

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update(z, attributes)

mig_val = mig.compute()

Keras Metric API

import latte
from latte.metrics.keras.disentanglement import MutualInformationGap
from tensorflow import keras as tfk

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.result()

Documentation

https://latte.readthedocs.io/en/latest

Supported metrics

๐Ÿงช Beta support | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue | ๐Ÿ‘€ KIV |

Metric Latte Functional Latte Modular TorchMetrics Keras Metric
Disentanglement Metrics
๐Ÿ“ Mutual Information Gap (MIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ??
๐Ÿ“ Dependency-blind Mutual Information Gap (DMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Mutual Information Gap (XMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Latent Information Gap (DLIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Separate Attribute Predictability (SAP) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Modularity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ ฮฒ-VAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ FactorVAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ DCI Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Interventional Robustness Score (IRS) ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Consistency ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Restrictiveness ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
Interpolatability Metrics
๐Ÿ“ Smoothness ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Monotonicity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Latent Density Ratio ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ
๐Ÿ“ Linearity ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€

Bundled metric modules

๐Ÿงช Experimental (subject to changes) | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue

Metric Bundle Latte Functional Latte Modular TorchMetrics Keras Metric Included
Dependency-aware Disentanglement ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช MIG, DMIG, XMIG, DLIG
LIAD-based Interpolatability ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช Smoothness, Monotonicity

Cite

For individual metrics, please cite the paper according to the link in the ๐Ÿ“ icon in front of each metric.

If you find our package useful please cite our repository and arXiv preprint as

@article{
  watcharasupat2021latte,
  author = {Watcharasupat, Karn N. and Lee, Junyoung and Lerch, Alexander},
  title = {{Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models}},
  eprint={2112.10638},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url = {https://github.com/karnwatcharasupat/latte}
  doi = {10.5281/zenodo.5786402}
}
Comments
  • Documentation: Metric Descriptions

    Documentation: Metric Descriptions

    Might be nice to provide a short description for each metric in addition to the paper links. The readme might get too long with it, but either some doc in the repo or maybe on a github.io page?

    type: documentation priority: high 
    opened by alexanderlerch 2
  • Add Smoothness and Monotonicity support

    Add Smoothness and Monotonicity support

    Smoothness

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    Monotonicity

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add Modularity support

    Add Modularity support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add SAP support

    Add SAP support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add DMIG, DLIG, XMIG support

    Add DMIG, DLIG, XMIG support

    DMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    XMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    DLIG

    • [ x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add MIG support

    Add MIG support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Support issue for on-the-fly computation in TF2 graph mode

    Support issue for on-the-fly computation in TF2 graph mode

    The current delegate-to-NumPy technique used in TF is only compatible with TF2 eager mode since Tensor.numpy() would not work in graph mode. As a result, graph-mode users will only be able to use Latte in the evaluation stage when the model weights are no longer changing but not on-the-fly during the training stage.

    However, certain computation steps required for some metrics (especially MI-based ones) necessarily require scikit-learn ops and there is no (maintainable) way to create consistent TF mirrors of those functions.

    One potential solution is to wrap the core functions in tf.numpy_function or tf.py_function but we will have to figure out a way to make the wrapper less painful to implement/maintain since the variable args/kwargs option currently used by the dtype converter is not allowed in these functions. A naive workaround would be to make a tf.numpy_function wrapper for every highest-possible level function with fixed args but this would be considered a last-resort solution.

    Links:

    • https://www.tensorflow.org/api_docs/python/tf/numpy_function
    • https://www.tensorflow.org/api_docs/python/tf/py_function
    type: enhancement priority: medium !! needs more brains !! 
    opened by karnwatcharasupat 3
Releases(v0.0.1-alpha5)
  • v0.0.1-alpha5(Jan 20, 2022)

    What's Changed

    • Add contributing guide by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/16
    • [ADD] add example notebooks by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/18

    Full Changelog: https://github.com/karnwatcharasupat/latte/compare/v0.0.1-alpha3...v0.0.1-alpha5

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1-alpha3(Dec 16, 2021)

  • v0.0.1-alpha2(Dec 9, 2021)

  • v0.0.1-alpha1(Dec 1, 2021)

Owner
Karn Watcharasupat
Lab Cat ๐Ÿฑ๐ŸŒˆ | Audio Signal Processing Research Student. NTU EEE Class of 2022. Georgia Tech Music Tech Visiting Researcher.
Karn Watcharasupat
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyแป…n Hoร ng Quรขn 4 Jun 17, 2021
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
A machine learning malware analysis framework for Android apps.

๐Ÿ•ต๏ธ A machine learning malware analysis framework for Android apps. โ˜ข๏ธ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022