kapre: Keras Audio Preprocessors

Overview

Kapre

Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time.

Tested on Python 3.6 and 3.7

Why Kapre?

vs. Pre-computation

  • You can optimize DSP parameters
  • Your model deployment becomes much simpler and consistent.
  • Your code and model has less dependencies

vs. Your own implementation

  • Quick and easy!
  • Consistent with 1D/2D tensorflow batch shapes
  • Data format agnostic (channels_first and channels_last)
  • Less error prone - Kapre layers are tested against Librosa (stft, decibel, etc) - which is (trust me) trickier than you think.
  • Kapre layers have some extended APIs from the default tf.signals implementation such as..
    • A perfectly invertible STFT and InverseSTFT pair
    • Mel-spectrogram with more options
  • Reproducibility - Kapre is available on pip with versioning

Workflow with Kapre

  1. Preprocess your audio dataset. Resample the audio to the right sampling rate and store the audio signals (waveforms).
  2. In your ML model, add Kapre layer e.g. kapre.time_frequency.STFT() as the first layer of the model.
  3. The data loader simply loads audio signals and feed them into the model
  4. In your hyperparameter search, include DSP parameters like n_fft to boost the performance.
  5. When deploying the final model, all you need to remember is the sampling rate of the signal. No dependency or preprocessing!

Installation

pip install kapre

API Documentation

Please refer to Kapre API Documentation at https://kapre.readthedocs.io

One-shot example

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, GlobalAveragePooling2D, Dense, Softmax
from kapre import STFT, Magnitude, MagnitudeToDecibel
from kapre.composed import get_melspectrogram_layer, get_log_frequency_spectrogram_layer

# 6 channels (!), maybe 1-sec audio signal, for an example.
input_shape = (44100, 6)
sr = 44100
model = Sequential()
# A STFT layer
model.add(STFT(n_fft=2048, win_length=2018, hop_length=1024,
               window_name=None, pad_end=False,
               input_data_format='channels_last', output_data_format='channels_last',
               input_shape=input_shape))
model.add(Magnitude())
model.add(MagnitudeToDecibel())  # these three layers can be replaced with get_stft_magnitude_layer()
# Alternatively, you may want to use a melspectrogram layer
# melgram_layer = get_melspectrogram_layer()
# or log-frequency layer
# log_stft_layer = get_log_frequency_spectrogram_layer() 

# add more layers as you want
model.add(Conv2D(32, (3, 3), strides=(2, 2)))
model.add(BatchNormalization())
model.add(ReLU())
model.add(GlobalAveragePooling2D())
model.add(Dense(10))
model.add(Softmax())

# Compile the model
model.compile('adam', 'categorical_crossentropy') # if single-label classification

# train it with raw audio sample inputs
# for example, you may have functions that load your data as below.
x = load_x() # e.g., x.shape = (10000, 6, 44100)
y = load_y() # e.g., y.shape = (10000, 10) if it's 10-class classification
# then..
model.fit(x, y)
# Done!

Citation

Please cite this paper if you use Kapre for your work.

@inproceedings{choi2017kapre,
  title={Kapre: On-GPU Audio Preprocessing Layers for a Quick Implementation of Deep Neural Network Models with Keras},
  author={Choi, Keunwoo and Joo, Deokjin and Kim, Juho},
  booktitle={Machine Learning for Music Discovery Workshop at 34th International Conference on Machine Learning},
  year={2017},
  organization={ICML}
}
Comments
  • Migrated functions to tf.keras

    Migrated functions to tf.keras

    This PR addresses #52 by removing the dependency on keras and switching to tensorflow.keras

    Proposed version is 0.1.6 because of pull request #56

    In particular, #56 keeps the dependency on keras with from keras.utils.conv_utils import conv_output_length

    opened by douglas125 27
  • Spectrogram?

    Spectrogram?

    I have an older version of Kapre that has time_frequency.Spectrogram, which is trainable.

    However, the new version of Kapre doesn't have Spectrogram anymore. Why?

    opened by turian 8
  • Melspectrogram cant be set 'trainable_fb=False'

    Melspectrogram cant be set 'trainable_fb=False'

    Melspectrogram cant be set 'trainable_fb=False',after I set trainable_fb=False,trainable_kernel=False,but seems like it doesnot work.It is still trainable.

    opened by zhh6 8
  • htk=true for mel frequencies

    htk=true for mel frequencies

    We noticed the current implenetation of the mel_frequencies function (based on Librosa) doesn't include the htk=True option, which is handy when training CNNs because then the frequency scale is fully logarithmic which, in principle, makes more sense for frequency invariant convolutional filters.

    What was the motivation for removing this? Any chance it can be added?

    opened by justinsalamon 8
  • Added parallel STFT implementation

    Added parallel STFT implementation

    Hi!

    As I comented in #98, I added a parallel STFT implementation based on the map_fn function following the indications of @zaccharieramzi here.

    I've added a use_parallel_stft param (disabled by default) that allows to use this function. I've put this param in as many functions as I can. I also added test cases for every function I can, including an specific test that checks that the result of the tf.signal.stft is equals to the result of the parallel_stft function.

    Hope this could serve us well meanwhile tensorflow resolves its issues with the fft implementation.

    opened by JPery 7
  • Amplitude-to-decibel conversion produces different results on different batches

    Amplitude-to-decibel conversion produces different results on different batches

    Related to #16, I found another issue that contributes to different prediction results depending on batch size (and the batches themselves). In particular, it occurs when using converting spectrograms to decibels.

    https://github.com/keunwoochoi/kapre/blob/master/kapre/backend_keras.py#L17

    The maximum is taken over the entire tensor, instead of per example in the batch. This results in different normalization when the examples in a batch are different.

    bug 
    opened by auroracramer 7
  • Inverse Spectrogram and Mel-Spectrogram Layer?

    Inverse Spectrogram and Mel-Spectrogram Layer?

    Namaste!

    kapre has become an integral part of all my audio Deep Learning experiments. Powerful! Thanks for providing such a great software!

    I was thinking... I guess it would make sense to have layers for inverse spectrogram and inverse mel-spectrogram. Thinking about Autoencoders, this would be even more powerful. I know that reconstructing samples from spectrograms is not the best, but it is possible to a certain degree.

    What do you think about that feature request?

    Best, Tristan

    opened by AI-Guru 7
  • Hey! The input is too short!

    Hey! The input is too short!

    Hi,

    I'm encountering an assertion problem when calling your code with a Tensorflow backend.

    input_shape = (44100,1)

    Could this be a be a problem with "channels_first" / "channels_last"?

    Best, Alex

    opened by slychief 6
  • Pip?

    Pip?

    It seems you were on pip, but are no longer. Is there anything I could do to help get kapre back on there? We want to use this library in a commercial application, and for our process pip packages are easier to support than a git repository.

    opened by ff-rfeather 6
  • trainable_stft error

    trainable_stft error

    Following your example but missing layer definition trainable_stft or something, can you provide example with error resolution?

    `# 6 channels (!), maybe 1-sec audio signal
    input_shape = (6, 44100) 
    sr = 44100
    model = Sequential()
    model.add(Melspectrogram(n_dft=512, n_hop=256, input_shape=src_shape,
                             border_mode='same', sr=sr, n_mels=128,
                             fmin=0.0, fmax=sr/2, power=1.0,
                             return_decibel=False, trainable_fb=False,
                             trainable_kernel=False
                             name='trainable_stft'))`
    
      File "<ipython-input-24-cea5588ddf1e>", line 13
        name='trainable_stft'))
           ^
    SyntaxError: invalid syntax
    
    opened by sildeag 6
  • `STFT` layer output shape deviates from `STFTTflite` layer in batch dimension

    `STFT` layer output shape deviates from `STFTTflite` layer in batch dimension

    Use Case

    I want to convert a STFT layer in my model to a STFTTflite to deploy it to my mobile device. In the documentation I found that another dimension is added to account for complex numbers. But I also encountered a behaviour that is not documented.

    Expected Behaviour

    input_shape = (2048, 1)  # mono signal
    
    model = keras.models.Sequential()  # TFLite incompatible model
    model.add(kapre.STFT(n_fft=1024, hop_length=512, input_shape=input_shape))
    
    tflite_model = keras.models.Sequential()  # TFLite compatible model
    tflite_model.add(kapre.STFTTflite(n_fft=1024, hop_length=512, input_shape=input_shape))
    

    model has the output shape (None, 3, 513, 1). Therefore, tflite_model should have the output shape (None, 3, 513, 1, 2).

    Observed Behaviour

    The output shape of tflite_model is (1, 3, 513, 1, 2) instead of (None, 3, 513, 1, 2).

    Problem Solution

    • If this behaviour is unwanted:
      • Change the model output format so that the batch dimension is correctly shaped.
    • Otherwise:
      • Explain in the documentation why the batch dimension is shaped to 1.
      • Explain in the documentation how to include this layer into models which expect the batch dimension to be shaped None.
    opened by PhilippMatthes 5
  • Problem incorporating SpecAugument in the training process

    Problem incorporating SpecAugument in the training process

    Hi,

    I'm trying to add a SpecAug layer in the training process of a CNN using the code below:

    
    CLIP_DURATION = 5 
    SAMPLING_RATE = 41000
    NUM_CHANNELS = 1
    
    INPUT_SHAPE = ((CLIP_DURATION * SAMPLING_RATE), NUM_CHANNELS)
    
    melgram = get_melspectrogram_layer(input_shape = INPUT_SHAPE,
                              n_fft = 2048,
                              hop_length = 512,
                              return_decibel=True,
                              n_mels = 40,
                              mel_f_min = 500,
                              mel_f_max = 15000,
                              input_data_format='channels_last',
                              output_data_format='channels_last')
    
    spec_augment = SpecAugment(freq_mask_param=5,
                              time_mask_param=10,
                              n_freq_masks=2,
                              n_time_masks=3,
                              mask_value=-100)   
    
    model = Sequential()
    model.add(melgram)
    model.add(spec_augment)
    

    The CNN summary looks like this:

    Model: "sequential_2"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     melspectrogram (Sequential)  (None, 397, 40, 1)       0         
                                                                     
     spec_augment_1 (SpecAugment  (None, 397, 40, 1)       0         
     )                                                               
                                                                     
    =================================================================
    Total params: 0
    Trainable params: 0
    Non-trainable params: 0
    _________________________________________________________________
    

    Compiling and fitting the model

    model.compile(loss = 'sparse_categorical_crossentropy', optimizer='adam', metrics = 'accuracy')
    
    early_stop = EarlyStopping(monitor='loss', patience=5)
    
    reduce_LR = ReduceLROnPlateau(monitor="val_loss",factor=0.1,patience=4)
    
    checkpointer = ModelCheckpoint(filepath = 'saved_models/bird_song_classification.hdf5')
    
    model.fit(X_train, y_train, validation_data = (X_val, y_val), epochs = 50, batch_size = 32, callbacks = [early_stop, checkpointer, reduce_LR])
    

    Then I get the following error:

    Epoch 1/50
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    [<ipython-input-35-e58a056ab523>](https://localhost:8080/#) in <module>
          7 checkpointer = ModelCheckpoint(filepath = 'saved_models/bird_song_classification.hdf5')
          8 
    ----> 9 model.fit(X_train, y_train, validation_data = (X_val, y_val), epochs = 50, batch_size = 32, callbacks = [early_stop, checkpointer, reduce_LR])
    
    6 frames
    [/usr/local/lib/python3.7/dist-packages/kapre/augmentation.py](https://localhost:8080/#) in tf___apply_masks_to_axis(self, x, axis, mask_param, n_masks)
         78                 try:
         79                     do_return = True
    ---> 80                     retval_ = ag__.converted_call(ag__.ld(tf).where, (ag__.ld(mask), ag__.ld(self).mask_value, ag__.ld(x)), None, fscope)
         81                 except:
         82                     do_return = False
    
    TypeError: in user code:
    
        File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function  *
            return step_function(self, iterator)
        File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function  **
            outputs = model.distribute_strategy.run(run_step, args=(data,))
        File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step  **
            outputs = model.train_step(data)
        File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 889, in train_step
            y_pred = self(x, training=True)
        File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
            raise e.with_traceback(filtered_tb) from None
        File "/tmp/__autograph_generated_filepzvfxhgz.py", line 63, in tf__call
            ag__.if_stmt((ag__.ld(training) in (None, False)), if_body_2, else_body_2, get_state_2, set_state_2, ('do_return', 'retval_'), 2)
        File "/tmp/__autograph_generated_filepzvfxhgz.py", line 58, in else_body_2
            retval_ = ag__.converted_call(ag__.ld(tf).map_fn, (), dict(elems=ag__.ld(x), fn=ag__.ld(self)._apply_spec_augment, dtype=ag__.ld(tf).float32, fn_output_signature=ag__.ld(tf).float32), fscope)
        File "/tmp/__autograph_generated_filef27o6c1f.py", line 44, in tf___apply_spec_augment
            ag__.if_stmt((ag__.ld(self).n_time_masks >= 1), if_body_1, else_body_1, get_state_1, set_state_1, ('x',), 1)
        File "/tmp/__autograph_generated_filef27o6c1f.py", line 39, in if_body_1
            x = ag__.converted_call(ag__.ld(self)._apply_masks_to_axis, (ag__.ld(x),), dict(axis=ag__.ld(time_axis), mask_param=ag__.ld(self).time_mask_param, n_masks=ag__.ld(self).n_time_masks), fscope)
        File "/tmp/__autograph_generated_file3vip8w4x.py", line 80, in tf___apply_masks_to_axis
            retval_ = ag__.converted_call(ag__.ld(tf).where, (ag__.ld(mask), ag__.ld(self).mask_value, ag__.ld(x)), None, fscope)
    
        TypeError: Exception encountered when calling layer "spec_augment_1" (type SpecAugment).
        
        in user code:
        
            File "/usr/local/lib/python3.7/dist-packages/kapre/augmentation.py", line 299, in call  *
                elems=x, fn=self._apply_spec_augment, dtype=tf.float32, fn_output_signature=tf.float32
            File "/usr/local/lib/python3.7/dist-packages/kapre/augmentation.py", line 273, in _apply_spec_augment  *
                x = self._apply_masks_to_axis(
            File "/usr/local/lib/python3.7/dist-packages/kapre/augmentation.py", line 254, in _apply_masks_to_axis  *
                return tf.where(mask, self.mask_value, x)
        
            TypeError: Input 'e' of 'SelectV2' Op has type float32 that does not match type int32 of argument 't'.
        
        
        Call arguments received by layer "spec_augment_1" (type SpecAugment):
          • x=tf.Tensor(shape=(None, 397, 40, 1), dtype=float32)
          • training=True
          • kwargs=<class 'inspect._empty'>
    

    The shape of X_train is

    (2182, 205000, 1)
    

    I'm using Tensorflow 2.9.2, and Python 3.7.15

    When I remove the SpecAug layer everything runs fine. I've tested using only the melspec + a mobile net at the end and it runs smooth. The problem is apparently related to SpecAug layer.

    Do you have any idea what could be going wrong here? I appreciate any guidance related to the problem. Best regards.

    opened by nnbuainain 2
  • Full-integer quantization and kapre layers

    Full-integer quantization and kapre layers

    I am training a model which includes the mel-spectrogram block from get_melspectrogram_layer() right after the input layer. Training goes well, and I am able to change the specific mel-spec-layers to their TFLite-counterparts (STFTTflite, MagnitudeTflite) afterwards. I have checked also that the model performs as well as before.

    The model also perfoms as expected when converting the model to .tflite using dynamic range quantization. However, when using full-integer quantization, the model loses its accuracy (see (https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only).

    I suppose the mel-spec starts to significantly differ as in full-integer quantization, the input values are projected to new range (int8). Is there any way to make it work with full-integer quantization?

    I guess I need to separate the mel-spec-layer from the model as a preprocessing step in order to succeed with full-integer quantization, i.e., apply the input quantization to the output values of mel-spec layer. But then I would have to deploy two models to the edge device, where the input goes first to the mel-spec-block and then to the rest of the model (?).

    I am using TensorFlow 2.7.0 and kapre 0.3.7.

    Here is my code for testing the tflite-model:

    preds = []
    # Test and evaluate the TFLite-converted model on unseen test data
    for i, sample in enumerate(X_test_full_scaled):
        X = sample
        
        if input_details['dtype'] == np.int8:
            input_scale, input_zero_point = input_details["quantization"]
            X = sample / input_scale + input_zero_point
        
        X = X.reshape((1, 8000, 1)).astype(input_details["dtype"])
        
        interpreter.set_tensor(input_index, X)
        interpreter.invoke()
        pred = interpreter.get_tensor(output_index)
        
        output_scale, output_zero_point = output_details['quantization']
        if output_details['dtype'] == np.int8:
            pred = pred.astype(np.float32)
            pred = (pred - output_zero_point) * output_scale
        
        pred = np.argmax(pred, axis=1)[0]
        preds.append(pred)
    
    preds = np.array(preds)
    
    opened by eppane 3
  • Calling Magnitude() and Phase() simultaneously

    Calling Magnitude() and Phase() simultaneously

    Hi,

    I am looking to call Magnitude() and Phase() simultaneously for the same STFT input and concatenate the magnitude and phase before feeding into the convolution layers in my CNN sequential Keras model.

    Is this possible?

    Best,

    Yang

    opened by HsuanYang-Wang 1
  • about kapre.utiils

    about kapre.utiils

    Hi, when i used "from kapre.utils import Normalization2D", I met this error which said No module named 'kapre.utils'. I see your package, and found that there is surely no utils.py. I am wondering how to slove it.

    Best wishes, Daisy

    opened by YiningWang2 1
  • Function missing in updated version

    Function missing in updated version

    I noticed there is a functon "kapre.utils.Normalization2D" in the old version, while I cannot find it in the updated version. Why? Is there have any alternative functions?

    opened by v3551G 1
  • trainable DSP parameters

    trainable DSP parameters

    hello contributers and community.

    I love your repo! It's eases so much for me! Although having the precomputation in the model is already great I'd like to know how you can optimize DSP parameters. It looks like that this is a feature from old versions (e.g. 0.2) and by default I dont see any trainable params in this layer.

    Could you please state if this is still available and how to use it?

    happy hacking Paul

    opened by bytosaur 2
Releases(Kapre-0.3.7)
Owner
Keunwoo Choi
MIR, machine learning, music recommendation.
Keunwoo Choi
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022