A forecasting system dedicated to smart city data

Overview

smart-city-predictions

System prognostyczny dedykowany dla danych inteligentnych miast

Praca inżynierska realizowana przez Michała Stawikowskiego and Witolda Merkela

Abstrakt

Celem pracy było zaprojektowanie i realizacja systemu informatycznego, który wykorzy-stuje środowiska składowania i przetwarzania danych wielkoskalowych (ang. Big Data) dopozyskiwania strumieni danych z inteligentnych miast (ang. Smart City) oraz metody uczeniamaszynowego do prognozowania na podstawie tych danych. System powinien mieć otwartąarchitekturę, która umożliwia dołączanie nowych źródeł danych oraz dołączanie nowychkomponentów, które tworzą zbiory uczące i testowe na potrzeby uczenia modeli klasyfikacyjnychi regresyjnych oraz wykonują prognozy z użyciem tych modeli. Postawione cele zostały zreali-zowane. W ramach systemu zostały zaimplementowane przykładowe komponenty pozyskiwaniadanych z różnych źródeł danych oraz ich składowanie, wykorzystujące uznane platformy BigData. Dodatkowo zostały stworzone przykładowe komponenty, które na podstawie zgroma-dzonych danych wykonują proces uczenia modeli klasyfikacyjnych i regresyjnych, a następniewyznaczają i udostępniają prognozowane wartości oraz statystyki uczenia modeli. W celuprezentacji informacji oraz wyników działania systemu zaimplementowano graficzny interfejsużytkownika. Na pracę składa się dogłębna analiza problemu, przedstawienie procesu projekto-wania systemu, opis działania stworzonych modułów, a także dokładna dokumentacja techniczna.

Przewodnik po repozytorium

  • data_for_ml - folder zawierający podstawowe operacje na danych. Funkcje zawarte w tym folderze służą przygotowaniu danych do uczenia maszynowego.
  • flask-with-auth - folder zawierający część aplikacji odpowiedzialną na graficzny interfejs użytkownika. Tutaj znajduje się baza danych użytkowników, kody .html, .css i .js odpowiedzialne za zarzadzanie poszczególnymi stronami oraz serwer w Flask.
  • flow_authomatization - folder zawierający funkcje odpowiedzialne za zarządzanie procesem trenowania modeli uczenia maszynowego oraz predykcji.
  • nifi - folder zawierający schematy wykorzystywanych przepływów w Apache NiFi.
  • spark_ml - zawiera funkcje tworzące modele regresyjne jak i klasyfikatory oraz dokunujące predykcji.
  • speed_layer - zawiera funkcje zarządzające przetwarzaniem strumieniowym oraz zapisem predykcji do Apache Cassandra.
Owner
Kevin Lai
Kevin Lai
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021