Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Overview

Introduction

This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test my code with Minigame, Simple64 map of PySC2. However, I am sure this code will work at more large scale game if network size is grown.

I am going to implement the IMPALA method soon for training the full game using RL.

Reference

  1. Download replay file(4.8.2 version file is needed): https://github.com/Blizzard/s2client-proto/tree/master/samples/replay-api
  2. Extracting observation, action from replay file: https://github.com/narhen/pysc2-replay
  3. FullyConv model of Tensorflow 1 version: https://github.com/simonmeister/pysc2-rl-agents
  4. Supervised Learning technique: https://github.com/metataro/sc2_imitation_learning/tree/8dca03e9be92e2d8297a4bc34248939af5c7ec3b

Version

Python

  1. Python3
  2. PySC2 3.0.0: https://github.com/deepmind/pysc2
  3. Tensorflow-gpu 2.3.0
  4. Tensorflow-probability 0.11.0
  5. Hickle 4.0.4
  6. Pygame 1.9.6
  7. Sklearn

Starcraft2

  1. Client 4.8.2: https://github.com/Blizzard/s2client-proto#downloads
  2. Replay 4.8.2

PC capaticy

  1. One NVIDIA Titan V
  2. 32GB RAM

Network architecture

Notice

There may be a minor error such a GPU setting, and network size. However, you can run it without major modification because I check that latest code works for Superviesed, Reinforcment Learning. It is not easy to check every part of code because it is huge.

Supervised Learning

I can only check that model with LSTM works well in Supervised Learning. FullyConv model does not show good performance yet although it fast then LSTM model for training.

Simple64

To implement AlphaStar susuccessfully, Supervised Training is crucial. Instead of using the existing replay data to check simple network of mine, I collect amount of 1000 number of replay files in Simple64 map using only Terran, and Marine rush from two Barrack with Random race opponent.

First, change a Starcraft2 replay file to hkl file format for fast training. It will remove a step of no_op action except when it is occured at first, end of episode and 8 dividble step. You need a around 80GB disk space to convert number of around 1000 replay files to hkl. Current, I only use replay file of Terran vs Terran.

$ python trajectory_generator.py --replay_path [your path]/StarCraftII/Replays/local_Simple64/ --saving_path [your path]/pysc2_dataset/simple64

After making hkl file of replay in your workspace, try to start the Supervised Learning using below command. It will save a trained model under Models folder of your workspace.

$ python run_supervised_learning.py --workspace_path [your path]/AlphaStar_Implementation/ --model_name alphastar --training True --gpu_use True --learning_rate 0.0001 --replay_hkl_file_path [your path]/pysc2_dataset/simple64/ --environment Simple64 --model_name alphastar

You can check training progress using Tensorboard under tensorboard folder of your workspace. It will take very long time to finish training becasue of vast of observation and action space.

Below is code for evaluating trained model

python run_evaluation.py --workspace_path [your path]/AlphaStar_Implementation/ --gpu_use True --visualize True --environment Simple64 --pretrained_model supervised_model

Video of downisde is one of behavior example of trained agent.

Supervised Learning demo Click to Watch!

I only use a replay file of Terran vs Terran case. Therefore, agent only need to recognize 19 unit during game. It can make the size of model do not need to become huge. Total unit number of Starcraft 2 is over 100 in full game case. For that, we need more powerful GPU to run.

Reinforcement Learning

I can only check that FullyConv works well in Reinforcement Learning. Model with LSTM takes too much time for training and does not show better performance than FullyConv yet.

MoveToBeacon

First, let's test the sample code for MoveToBeacon environment which is the simplest environment in PySC2 using model which has similar network structure as AlphaStar. First, run 'git clone https://github.com/kimbring2/AlphaStar_Implementation.git' command in your workspace. Next, start training by using below command.

$ python run_reinforcement_learning.py --workspace_path [your path]/AlphaStar_Implementation/ --training True --gpu_use True --save_model True --num_worker 5 --model_name alphastar

I provide a FullyConv, AlphaStar style model. You can change a model by using the model_name argument. Default is FullyConv model.

After the training is completed, test it using the following command. Training performance is based on two parameter. Try to use a 1.0 as the gradient_clipping and 0.0001 as the learning_rate. Futhermore, trarning progress and result are depends on the seed value. Model is automatically saved if the average reward is over 5.0.

Gradient clipping is essential for training the model of PySC2 because it has multiple stae encoder, action head network. In my experience, gradient norm value is changed based on network size. Therefore, you should check it everytime you change model structure. You can check it by using 'tf.linalg.global_norm' function.

grads = tape.gradient(loss, model.trainable_variables)
grad_norm = tf.linalg.global_norm(grads)
tf.print("grad_norm: ", grad_norm)
grads, _ = tf.clip_by_global_norm(grads, arguments.gradient_clipping)

Afater checking norm value, you should remove an outlier value among them.

After training against various parameter, I can obtain the following graph of average score.

After finishing training, run below command to test pretrained model that was saved under Models folder of workspace.

$ python run_evaluation.py --environment Simple64 --workspace_path [your path]/AlphaStar_Implementation --visualize True --model_name alphastar --pretrained_model reinforcement_model

If the accumulated reward is over 20 per episode, you can see the Marine follow the beacon well.

Detailed information

I am writing explanation for code at Medium as series.

  1. Tutorial about Replay file: https://medium.com/@dohyeongkim/alphastar-implementation-serie-part1-606572ddba99
  2. Tutorial about Network: https://dohyeongkim.medium.com/alphastar-implementation-series-part5-fd275bea68b5
  3. Tutorial about Reinforcement Learning: https://medium.com/nerd-for-tech/alphastar-implementation-series-part6-4044e7efb1ce
  4. Tutorial about Supervised Learning: https://dohyeongkim.medium.com/alphastar-implementation-series-part7-d28468c07739

License

Apache License 2.0

Comments
  • Map 'mini_games\MoveToBeacon.SC2Map' not found.

    Map 'mini_games\MoveToBeacon.SC2Map' not found.

    run this project,There is a problem:‘Map 'mini_games\MoveToBeacon.SC2Map' not found.’ I'm sorry to bother you, but I don't know why. Hope you can answer .Thanks

    opened by ashaokai123 6
  • Failed on running trajectory_generator.py: RuntimeError SC2_x64

    Failed on running trajectory_generator.py: RuntimeError SC2_x64

    when I tried to run python trajectory_generator.py, I got error messages below and got nothing in the saving_path pysc2_dataset/simple64.

    RuntimeError: Trying to run '/home/auto/StarCraftII/Versions/Base71663/SC2_x64', but it isn't executable.

    opened by mlx3223mlx 3
  • Failed on running trajectory_generator.py: Could not find map name

    Failed on running trajectory_generator.py: Could not find map name

    I did download replay files from : https://drive.google.com/drive/folders/1lqb__ubLKLfw4Jiig6KsO-D0e_wrnGWk?usp=sharing, but when I tried to run python trajectory_generator.py --replay_path [your path]/StarCraftII/Replays/local_Simple64/ --saving_path [your path]/pysc2_dataset/simple64, I got error messages below and got nothing in the saving_path pysc2_dataset/simple64.

    OpenGL initialized! Listening on: 127.0.0.1:18148 Startup Phase 3 complete. Ready for commands. ConnectHandler: Request from 127.0.0.1:37386 accepted ReadyHandler: 127.0.0.1:37386 ready Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay Configuring interface options Configure: raw interface enabled Configure: feature layer interface enabled Configure: score interface enabled Configure: render interface disabled Launching next game. Next launch phase started: 2 Next launch phase started: 3 Next launch phase started: 4 Next launch phase started: 5 Next launch phase started: 6 Next launch phase started: 7 Next launch phase started: 8 Starting replay 'TempStartReplay.SC2Replay' Game has started. Using default stable ids, none found at: /home/dev/SC2.4.8.2/StarCraftII/stableid.json Successfully loaded stable ids: GameData\stableid.json Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay player1_race fail Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay Configuring interface options Configure: raw interface enabled Configure: feature layer interface enabled Configure: score interface enabled Configure: render interface disabled Launching next game. Next launch phase started: 2 Next launch phase started: 3 Next launch phase started: 4 Next launch phase started: 5 Next launch phase started: 6 Next launch phase started: 7 Next launch phase started: 8 Starting replay 'TempStartReplay.SC2Replay' Game has started. Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay player1_race fail Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay

    OS version is ubuntu16.04, python version is 3.7.7 and other dependencies are installed according to README.

    opened by zhang-yingping 3
  • about the spatial encoder

    about the spatial encoder

    according https://ychai.uk/notes/2019/07/21/RL/DRL/Decipher-AlphaStar-on-StarCraft-II/ , the spatial encoder may be not consistant with the description of the paper presented below:

    Spatial encoder Inputs: map, entity_embeddings Outputs: embedded_spatial - A 1D tensor of the embedded map map_skip - output tensors of intermediate computation, used for skip connections. map: add two features

    cameral: whether a location is inside/outside the virtual camera; scattered entities. Pass entity_embeddings through a size 32 conv1D followed by a ReLU, then scattered into a map layer so that the 32 vector at a specific location corresponds to the units placed there. Concatenated all planes including camera, scattered_entities, vasibility, entity_owners, buildable, etc. Project to 32 channels by 2D conv with kernel size 1, followed by a ReLU. Then downsampled from 128x128 to 16x16 through 3 conv2D and ReLUs with different channel sizes (i.e., 64, 128, and 128).

    embedded_spatial: The ResBlock output is embedded into a 1D tensor of size 256 by a MLP and a ReLU.

    opened by SongleChen2015 1
  • Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

    Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

    Hi there,

    When I ran the reinforcement learning, the program was interrupted with the exit code 137 (interrupted by signal 9: SIGKILL),

    I found that the memory of the RAM was increasing in the Reinforcement Learning training process, and the training was interrupted when the memory was over 100%.

    Step 320 image

    Step 400 image

    Thank you for your help.

    opened by HenryCY 0
  • IndexError: list index out of range

    IndexError: list index out of range

    Traceback (most recent call last): File "C:\Users\JACK\Desktop\AlphaStar_Implementation\run_reinforcement_learning.py", line 77, in tf.config.experimental.set_memory_growth(physical_devices[0], True) IndexError: list index out of range

    opened by JBX2010 0
Releases(v1.0.0)
Owner
Dohyeong Kim
Researchers interested in creating agents that behave like humans using Deep Learning
Dohyeong Kim
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023