基于Paddle框架的PSENet复现

Overview

PSENet-Paddle

基于Paddle框架的PSENet复现

本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

AIStudio链接

参考项目:

whai362-PSENet

环境配置

本项目利用AIstudio平台,采用paddlepaddle: 2.0.2-gpu Version,除此之外你需要通过pip install mmcv editdistance Polygon3 pyclipper或者pip install -r requirement.txt来安装依赖包

数据集

本项目已搭载PSENet比赛指定数据集,你可以在此找到搭载的数据集,包含ICDAR2015 Task4以及Total-Text

工程目录

注意到你需要将submitPSENet重命名为PSENet

/home/aistudio/PSENet
|───data(解压的data.zip)
└───config
└───models
└───dataset
└───eval
└───utils
└───compile.sh
└───__init__.py
└───test.py
└───train.py
└───requirement.txt
└───logo.gif

项目配置**

注意:由于aistudio的docker环境并不适配本项目的编译,所以你需要在本地计算机编译完成后上传编译文件,在本地计算机我才用如下配置,你可以使用gcc --versiong++ --version查看配置

AIStudio Local PC
gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

可以发现AIStudio的g++版本不适配,注意:你需要相同的架构,系统以及python版本,(Ubuntu)linux-x86_64&python3.7

`./compile.sh` or `bash compile.sh` if come out bash: ./compile.sh: Permission denied

或者直接进入指定目录,手动编译

cd /home/aistudio/PSENet/models/post_processing/pse
python setup.py build_ext --inplace

编译完成后你会在/home/aistudio/PSENet/models/post_processing/pse得到build/temp.linux-x86_64-3.7/pse.o文件和pse.cpython-37m-x86_64-linux-gnu.so文件

注意:本项目已经全部配置完成,这一步无需操作

训练

需要注意的是,在paddlepaddle-2.0.2中并不支持字典数据读取,因此我在/home/aistudio/PSENet/utils/data_loader.py利用迭代器重写了DataLoader这拉慢了数据读取的速度,会导致训练速度略慢,例如在使用psenet_r50_ic15_1024_finetune.py训练一个epoch需要512.4秒,另外paddlepaddle2.0.2暂不支持Identity方法,因此我在/home/aistudio/PSENet/models/utils/fuse_conv_bn.py通过继承Paddle.nn.Layer写了Identity

cd /home/aistudio/PSENet/
python train.py ${CONFIG_FILE}

例如:

cd /home/aistudio/PSENet/
python train.py config/psenet/psenet_r50_ic15_736.py

训练开启时,会生成一个类似/home/aistudio/PSENet/checkpoints/psenet_r50_ic15_1024_finetune的文件夹,里面将保存权重和优化器参数

测试

cd /home/aistudio/PSENet/
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams

评估

你需要注意的是:测试和评估是递进的,通过测试生成文件后,进行评估

ICDAR 2015

cd /home/aistudio/PSENet/eval
`./eval_ic15.sh` or `bash ./eval_ic15.sh`

你会得到如下类似信息:

Calculated!{"precision": 0.8620689655172413, "recall": 0.7944150216658642, "hmean": 0.826860435980957, "AP": 0}

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Scale Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N Shorter Side: 736 psenet_r50_ic15_736.py 83.6 74.0 78.5 checkpoint_ic15_736
PSENet ResNet50 N Shorter Side: 1024 psenet_r50_ic15_1024.py 84.4 76.3 80.2 checkpoint_ic15_1024
PSENet ResNet50 Y Shorter Side: 736 psenet_r50_ic15_736_finetune.py 85.3 76.8 80.9 checkpoint_ic15_736_finetune
PSENet ResNet50 Y Shorter Side: 1024 psenet_r50_ic15_1024_finetune.py 86.2 79.4 82.7 checkpoint_ic15_1024_finetune

Total-Text

Text detection

cd /home/aistudio/PSENet/eval
./eval_tt.sh or `bash ./eval_tt.sh`

你会得到如下类似信息:

Precision:_0.8727937336814604_______/Recall:_0.7786751361161512/Hmean:_0.8230524859472805

pb

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N psenet_r50_tt.py 87.3 77.9 82.3 checkpoint_tt
PSENet ResNet50 Y psenet_r50_tt_finetune.py 89.3 79.6 84.2 checkpoint_tt_finetune

速度测试

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams --report_speed

你会得到如下类似信息

Testing 283/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 284/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 285/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 286/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

Jan Zdenek 208 Nov 15, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Discord QR Scam Code Generator + Token grab mobile device.

A Python script that automatically generates a Nitro scam QR code and grabs the Discord token when scanned.

Visual 9 Nov 22, 2022
Amazing 3D explosion animation using Pygame module.

3D Explosion Animation 💣 💥 🔥 Amazing explosion animation with Pygame. 💣 Explosion physics An Explosion instance is made of a set of Particle objec

Dylan Tintenfich 12 Mar 11, 2022
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023