Area-weighted venn-diagrams for Python/matplotlib

Overview

Venn diagram plotting routines for Python/Matplotlib

https://travis-ci.org/konstantint/matplotlib-venn.png?branch=master

Routines for plotting area-weighted two- and three-circle venn diagrams.

Installation

The simplest way to install the package is via easy_install or pip:

$ easy_install matplotlib-venn

Dependencies

  • numpy,
  • scipy,
  • matplotlib.

Usage

The package provides four main functions: venn2, venn2_circles, venn3 and venn3_circles.

The functions venn2 and venn2_circles accept as their only required argument a 3-element list (Ab, aB, AB) of subset sizes, e.g.:

venn2(subsets = (3, 2, 1))

and draw a two-circle venn diagram with respective region areas. In the particular example, the region, corresponding to subset A and not B will be three times larger in area than the region, corresponding to subset A and B. Alternatively, you can simply provide a list of two set or Counter (i.e. multi-set) objects instead (new in version 0.7), e.g.:

venn2([set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])])

Similarly, the functions venn3 and venn3_circles take a 7-element list of subset sizes (Abc, aBc, ABc, abC, AbC, aBC, ABC), and draw a three-circle area-weighted venn diagram. Alternatively, you can provide a list of three set or Counter objects (rather than counting sizes for all 7 subsets).

The functions venn2_circles and venn3_circles draw just the circles, whereas the functions venn2 and venn3 draw the diagrams as a collection of colored patches, annotated with text labels. In addition (version 0.7+), functions venn2_unweighted and venn3_unweighted draw the Venn diagrams without area-weighting.

Note that for a three-circle venn diagram it is not in general possible to achieve exact correspondence between the required set sizes and region areas, however in most cases the picture will still provide a decent indication.

The functions venn2_circles and venn3_circles return the list of matplotlib.patch.Circle objects that may be tuned further to your liking. The functions venn2 and venn3 return an object of class VennDiagram, which gives access to constituent patches, text elements, and (since version 0.7) the information about the centers and radii of the circles.

Basic Example:

from matplotlib_venn import venn2
venn2(subsets = (3, 2, 1))

For the three-circle case:

from matplotlib_venn import venn3
venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))

A more elaborate example:

from matplotlib import pyplot as plt
import numpy as np
from matplotlib_venn import venn3, venn3_circles
plt.figure(figsize=(4,4))
v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'))
v.get_patch_by_id('100').set_alpha(1.0)
v.get_patch_by_id('100').set_color('white')
v.get_label_by_id('100').set_text('Unknown')
v.get_label_by_id('A').set_text('Set "A"')
c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed')
c[0].set_lw(1.0)
c[0].set_ls('dotted')
plt.title("Sample Venn diagram")
plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70),
             ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1),
             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))
plt.show()

An example with multiple subplots (new in version 0.6):

from matplotlib_venn import venn2, venn2_circles
figure, axes = plt.subplots(2, 2)
venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0])
venn2_circles((1, 2, 3), ax=axes[0][1])
venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0])
venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1])
plt.show()

Perhaps the most common use case is generating a Venn diagram given three sets of objects:

set1 = set(['A', 'B', 'C', 'D'])
set2 = set(['B', 'C', 'D', 'E'])
set3 = set(['C', 'D',' E', 'F', 'G'])

venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3'))
plt.show()

Questions

  • If you ask your questions at StackOverflow and tag them matplotlib-venn, chances are high you'll get an answer from the maintainer of this package.

See also

Owner
Konstantin Tretyakov
Konstantin Tretyakov
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust

esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con

Alex Spitzer 1 Dec 28, 2021
A site that displays up to date COVID-19 stats, powered by fastpages.

https://covid19dashboards.com This project was built with fastpages Background This project showcases how you can use fastpages to create a static das

GitHub 1.6k Jan 07, 2023
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.

Open-source tool for exploring, labeling, and monitoring data for AI projects

Recognai 1.5k Jan 07, 2023
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
Squidpy is a tool for the analysis and visualization of spatial molecular data.

Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools t

Theis Lab 251 Dec 19, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

JoelImgu 3 Dec 14, 2022
Time series visualizer is a flexible extension that provides filling world map by country from real data.

Time-series-visualizer Time series visualizer is a flexible extension that provides filling world map by country from csv or json file. You can know d

Long Ng 3 Jul 09, 2021
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
An application that allows you to design and test your own stock trading algorithms in an attempt to beat the market.

StockBot is a Python application for designing and testing your own daily stock trading algorithms. Installation Use the

Ryan Cullen 280 Dec 19, 2022
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022