I-BERT: Integer-only BERT Quantization

Overview

Screen Shot 2020-12-19 at 9 51 50 PM

I-BERT: Integer-only BERT Quantization

HuggingFace Implementation

I-BERT is also available in the master branch of HuggingFace! Visit the following links for the HuggingFace implementation.

Github Link: https://github.com/huggingface/transformers/tree/master/src/transformers/models/ibert

Model Links:

Installation & Requirements

You can find more detailed installation guides from the Fairseq repo: https://github.com/pytorch/fairseq

1. Fairseq Installation

Reference: Fairseq

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • Currently, I-BERT only supports training on GPU
git clone https://github.com/kssteven418/I-BERT.git
cd I-BERT
pip install --editable ./

2. Download pre-trained RoBERTa models

Reference: Fairseq RoBERTa

Download pretrained RoBERTa models from the links and unzip them.

# In I-BERT (root) directory
mkdir models && cd models
wget {link}
tar -xvf roberta.{base|large}.tar.gz

3. Download GLUE datasets

Reference: Fairseq Finetuning on GLUE

First, download the data from the GLUE website. Make sure to download the dataset in I-BERT (root) directory.

# In I-BERT (root) directory
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all

Then, preprocess the data.

# In I-BERT (root) directory
./examples/roberta/preprocess_GLUE_tasks.sh glue_data {task_name}

task_name can be one of the following: {ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA} . ALL will preprocess all the tasks. If the command is run propely, preprocessed datasets will be stored in I-BERT/{task_name}-bin

Now, you have the models and the datasets ready, so you are ready to run I-BERT!

Task-specific Model Finetuning

Before quantizing the model, you first have to finetune the pre-trained models to a specific downstream task. Although you can finetune the model from the original Fairseq repo, we provide ibert-base branch where you can train non-quantized models without having to install the original Fairseq. This branch is identical to the master branch of the original Fairseq repo, except for some loggings and run scripts that are irrelevant to the functionality. If you already have finetuned models, you can skip this part.

Run the following commands to fetch and move to the ibert-base branch:

# In I-BERT (root) directory
git fetch
git checkout -t origin/ibert-base

Then, run the script:

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC

Checkpoints and validation logs will be stored at ./outputs directory. You can change this output location by adding the option --output-dir OUTPUT_DIR. The exact output location will look something like: ./outputs/none/MRPC-base/wd0.1_ad0.1_d0.1_lr2e-5/1219-101427_ckpt/checkpoint_best.pt. By default, models are trained according to the task-specific hyperparameters specified in Fairseq Finetuning on GLUE. However, you can also specify the hyperparameters with the options (use the option -h for more details).

Quantiation & Quantization-Aware-Finetuning

Now, we come back to ibert branch for quantization.

git checkout ibert

And then run the script. This will first quantize the model and do quantization-aware-finetuning with the learning rate that you specify with the option --lr {lr}.

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name} \
# --restore-file {ckpt_path} --lr {lr}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC --restore-file ckpt-best.pt --lr 1e-6

NOTE: Our work is still on progress. Currently, all integer operations are executed with floating point.

Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Fang Zhonghao 13 Nov 19, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023