I-BERT: Integer-only BERT Quantization

Overview

Screen Shot 2020-12-19 at 9 51 50 PM

I-BERT: Integer-only BERT Quantization

HuggingFace Implementation

I-BERT is also available in the master branch of HuggingFace! Visit the following links for the HuggingFace implementation.

Github Link: https://github.com/huggingface/transformers/tree/master/src/transformers/models/ibert

Model Links:

Installation & Requirements

You can find more detailed installation guides from the Fairseq repo: https://github.com/pytorch/fairseq

1. Fairseq Installation

Reference: Fairseq

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • Currently, I-BERT only supports training on GPU
git clone https://github.com/kssteven418/I-BERT.git
cd I-BERT
pip install --editable ./

2. Download pre-trained RoBERTa models

Reference: Fairseq RoBERTa

Download pretrained RoBERTa models from the links and unzip them.

# In I-BERT (root) directory
mkdir models && cd models
wget {link}
tar -xvf roberta.{base|large}.tar.gz

3. Download GLUE datasets

Reference: Fairseq Finetuning on GLUE

First, download the data from the GLUE website. Make sure to download the dataset in I-BERT (root) directory.

# In I-BERT (root) directory
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all

Then, preprocess the data.

# In I-BERT (root) directory
./examples/roberta/preprocess_GLUE_tasks.sh glue_data {task_name}

task_name can be one of the following: {ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA} . ALL will preprocess all the tasks. If the command is run propely, preprocessed datasets will be stored in I-BERT/{task_name}-bin

Now, you have the models and the datasets ready, so you are ready to run I-BERT!

Task-specific Model Finetuning

Before quantizing the model, you first have to finetune the pre-trained models to a specific downstream task. Although you can finetune the model from the original Fairseq repo, we provide ibert-base branch where you can train non-quantized models without having to install the original Fairseq. This branch is identical to the master branch of the original Fairseq repo, except for some loggings and run scripts that are irrelevant to the functionality. If you already have finetuned models, you can skip this part.

Run the following commands to fetch and move to the ibert-base branch:

# In I-BERT (root) directory
git fetch
git checkout -t origin/ibert-base

Then, run the script:

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC

Checkpoints and validation logs will be stored at ./outputs directory. You can change this output location by adding the option --output-dir OUTPUT_DIR. The exact output location will look something like: ./outputs/none/MRPC-base/wd0.1_ad0.1_d0.1_lr2e-5/1219-101427_ckpt/checkpoint_best.pt. By default, models are trained according to the task-specific hyperparameters specified in Fairseq Finetuning on GLUE. However, you can also specify the hyperparameters with the options (use the option -h for more details).

Quantiation & Quantization-Aware-Finetuning

Now, we come back to ibert branch for quantization.

git checkout ibert

And then run the script. This will first quantize the model and do quantization-aware-finetuning with the learning rate that you specify with the option --lr {lr}.

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name} \
# --restore-file {ckpt_path} --lr {lr}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC --restore-file ckpt-best.pt --lr 1e-6

NOTE: Our work is still on progress. Currently, all integer operations are executed with floating point.

i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022