Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

Overview

[MM'21] Constrained Graphic Layout Generation via Latent Optimization

This repository provides the official code for the paper "Constrained Graphic Layout Generation via Latent Optimization", especially the code for:

  • LayoutGAN++: generative adversarial networks for layout generation
  • CLG-LO: a framework for generating layouts that satisfy constraints
  • Layout evaluation: measuring the quantitative metrics of Layout FID, Maximum IoU, Alignment, and Overlap for generated layouts

Installation

  1. Clone this repository

    git clone https://github.com/ktrk115/const_layout.git
    cd const_layout
  2. Create a new conda environment (Python 3.8)

    conda create -n const_layout python=3.8
    conda activate const_layout
  3. Install PyTorch 1.8.* and the corresponding versoin of PyTorch Geometric

  4. Install the other dependent libraries

    pip install -r requirements.txt
  5. Prepare data (see this instruction)

  6. Download pre-trained models

    ./download_model.sh

Development environment

  • Ubuntu 18.04, CUDA 11.1

LayoutGAN++

Architecture

Training animation

Generate layouts with LayoutGAN++

python generate.py pretrained/layoutganpp_rico.pth.tar --out_path output/generated_layouts.pkl --num_save 5

Train LayoutGAN++ model

python train.py --dataset rico --batch_size 64 --iteration 200000 --latent_size 4 --lr 1e-05 --G_d_model 256 --G_nhead 4 --G_num_layers 8 --D_d_model 256 --D_nhead 4 --D_num_layers 8

CLG-LO

w/ beautification constraints w/ relational constraints

Generate layouts with beautification constraints

python generate_const.py pretrained/layoutganpp_publaynet.pth.tar --const_type beautify --out_path output/beautify/generated_layouts.pkl --num_save 5

Generate layouts with relational constraints

python generate_const.py pretrained/layoutganpp_publaynet.pth.tar --const_type relation --out_path output/relation/generated_layouts.pkl --num_save 5

Layout evaluation

Evaluate generated layouts

python eval.py rico output/generated_layouts.pkl

A pickle file should be a list of layouts, where each layout is a tuple of bounding boxes and labels. The bounding box is represented by [x, y, width, height] in normalized coordinates, and the label is represented by an index. An example is shown below.

In [x]: layouts
Out[x]:
[(array([[0.47403812, 0.11276676, 0.6250037 , 0.02210438],
         [0.49971417, 0.8550553 , 0.81388366, 0.03492427],
         [0.49919674, 0.47857162, 0.81024694, 0.7070079 ]], dtype=float32),
  array([0, 0, 3]),
  ...

Citation

If this repository helps your research, please consider citing our paper.

@inproceedings{Kikuchi2021,
    title = {Constrained Graphic Layout Generation via Latent Optimization},
    author = {Kotaro Kikuchi and Edgar Simo-Serra and Mayu Otani and Kota Yamaguchi},
    booktitle = {Proceedings of the ACM International Conference on Multimedia},
    series = {MM '21},
    volume = {},
    year = {2021},
    pages = {},
    doi = {10.1145/3474085.3475497}
}

Licence

GNU AGPLv3

Related repositories

Owner
Kotaro Kikuchi
Waseda University
Kotaro Kikuchi
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023