Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

Related tags

Deep LearningRMNet
Overview

RMNet

This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.

Language grade: Python Total alerts

Overview

Cite this work

@inproceedings{xie2021efficient,
  title={Efficient Regional Memory Network for Video Object Segmentation},
  author={Xie, Haozhe and 
          Yao, Hongxun and 
          Zhou, Shangchen and 
          Zhang, Shengping and 
          Sun, Wenxiu},
  booktitle={CVPR},
  year={2021}
}

Datasets

We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:

Pretrained Models

The pretrained models for DAVIS and YouTube-VOS are available as follows:

Prerequisites

Clone the Code Repository

git clone https://github.com/hzxie/RMNet.git

Install Python Denpendencies

cd RMNet
pip install -r requirements.txt

Build PyTorch Extensions

NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.

RMNET_HOME=`pwd`

cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user

cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user

Precompute the Optical Flow

Update Settings in config.py

You need to update the file path of the datasets:

__C.DATASETS                                     = edict()
__C.DATASETS.DAVIS                               = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH            = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH                 = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH          = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH        = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS                         = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH      = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH           = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH    = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH  = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC                          = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH       = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH            = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH     = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD                               = edict()
__C.DATASETS.ECSSD.N_IMAGES                      = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH                 = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH          = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K                             = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH          = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH               = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH        = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO                              = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH           = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH                = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH         = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K                              = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH           = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH                = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH         = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'

# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET                        = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']  # Pretrain
__C.DATASET.TRAIN_DATASET                        = ['YOUTUBE_VOS', 'DAVISx5']                    # Fine-tune
__C.DATASET.TEST_DATASET                         = 'DAVIS'

# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK                                = 'RMNet'

Get Started

To train RMNet, you can simply use the following command:

python3 runner.py

To test RMNet, you can use the following command:

python3 runner.py --test --weights=/path/to/pretrained/model.pth

License

This project is open sourced under MIT license.

Owner
Haozhe Xie
I am a Ph.D. candidate in Harbin Institute of Technology, focusing on 3D reconstruction, video segmentation, and computer vision.
Haozhe Xie
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022