Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

Related tags

Deep LearningRMNet
Overview

RMNet

This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.

Language grade: Python Total alerts

Overview

Cite this work

@inproceedings{xie2021efficient,
  title={Efficient Regional Memory Network for Video Object Segmentation},
  author={Xie, Haozhe and 
          Yao, Hongxun and 
          Zhou, Shangchen and 
          Zhang, Shengping and 
          Sun, Wenxiu},
  booktitle={CVPR},
  year={2021}
}

Datasets

We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:

Pretrained Models

The pretrained models for DAVIS and YouTube-VOS are available as follows:

Prerequisites

Clone the Code Repository

git clone https://github.com/hzxie/RMNet.git

Install Python Denpendencies

cd RMNet
pip install -r requirements.txt

Build PyTorch Extensions

NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.

RMNET_HOME=`pwd`

cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user

cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user

Precompute the Optical Flow

Update Settings in config.py

You need to update the file path of the datasets:

__C.DATASETS                                     = edict()
__C.DATASETS.DAVIS                               = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH            = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH                 = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH          = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH        = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS                         = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH      = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH           = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH    = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH  = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC                          = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH       = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH            = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH     = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD                               = edict()
__C.DATASETS.ECSSD.N_IMAGES                      = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH                 = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH          = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K                             = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH          = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH               = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH        = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO                              = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH           = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH                = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH         = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K                              = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH           = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH                = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH         = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'

# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET                        = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']  # Pretrain
__C.DATASET.TRAIN_DATASET                        = ['YOUTUBE_VOS', 'DAVISx5']                    # Fine-tune
__C.DATASET.TEST_DATASET                         = 'DAVIS'

# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK                                = 'RMNet'

Get Started

To train RMNet, you can simply use the following command:

python3 runner.py

To test RMNet, you can use the following command:

python3 runner.py --test --weights=/path/to/pretrained/model.pth

License

This project is open sourced under MIT license.

Owner
Haozhe Xie
I am a Ph.D. candidate in Harbin Institute of Technology, focusing on 3D reconstruction, video segmentation, and computer vision.
Haozhe Xie
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022