PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

Overview

pytorch-deep-generative-replay

PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017

model

Results

Continual Learning on Permutated MNISTs

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

Continual Learning on MNIST-SVHN

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without any replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Continual Learning on SVHN-MNIST

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Installation

$ git clone https://github.com/kuc2477/pytorch-deep-generative-replay
$ pip install -r pytorch-deep-generative-replay/requirements.txt

Commands

Usage

$ ./main.py --help
$ usage: PyTorch implementation of Deep Generative Replay [-h]
                                                          [--experiment {permutated-mnist,svhn-mnist,mnist-svhn}]
                                                          [--mnist-permutation-number MNIST_PERMUTATION_NUMBER]
                                                          [--mnist-permutation-seed MNIST_PERMUTATION_SEED]
                                                          --replay-mode
                                                          {exact-replay,generative-replay,none}
                                                          [--generator-z-size GENERATOR_Z_SIZE]
                                                          [--generator-c-channel-size GENERATOR_C_CHANNEL_SIZE]
                                                          [--generator-g-channel-size GENERATOR_G_CHANNEL_SIZE]
                                                          [--solver-depth SOLVER_DEPTH]
                                                          [--solver-reducing-layers SOLVER_REDUCING_LAYERS]
                                                          [--solver-channel-size SOLVER_CHANNEL_SIZE]
                                                          [--generator-c-updates-per-g-update GENERATOR_C_UPDATES_PER_G_UPDATE]
                                                          [--generator-iterations GENERATOR_ITERATIONS]
                                                          [--solver-iterations SOLVER_ITERATIONS]
                                                          [--importance-of-new-task IMPORTANCE_OF_NEW_TASK]
                                                          [--lr LR]
                                                          [--weight-decay WEIGHT_DECAY]
                                                          [--batch-size BATCH_SIZE]
                                                          [--test-size TEST_SIZE]
                                                          [--sample-size SAMPLE_SIZE]
                                                          [--image-log-interval IMAGE_LOG_INTERVAL]
                                                          [--eval-log-interval EVAL_LOG_INTERVAL]
                                                          [--loss-log-interval LOSS_LOG_INTERVAL]
                                                          [--checkpoint-dir CHECKPOINT_DIR]
                                                          [--sample-dir SAMPLE_DIR]
                                                          [--no-gpus]
                                                          (--train | --test)

To Run Full Experiments

# Run a visdom server and conduct full experiments
$ python -m visdom.server &
$ ./run_full_experiments

To Run a Single Experiment

# Run a visdom server and conduct a desired experiment
$ python -m visdom.server &
$ ./main.py --train --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

To Generate Images from the learned Scholar

$ # Run the command below and visit the "samples" directory
$ ./main.py --test --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

Note

  • I failed to find the supplementary materials that the authors mentioned in the paper to contain the experimental details. Thus, I arbitrarily chose a 4-convolutional-layer CNN as a solver in this project. If you know where I can find the additional materials, please let me know through the project's Github issue.

Reference

Author

Ha Junsoo / @kuc2477 / MIT License

Owner
Junsoo Ha
A graduate student @SNUVL
Junsoo Ha
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023