This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Overview

Neural RGB-D Surface Reconstruction

Paper | Project Page | Video

Neural RGB-D Surface Reconstruction
Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, Justus Thies
Arxiv Pre-print

This repository contains the code for the paper Neural RGB-D Surface Reconstruction, a novel approach for 3D reconstruction that combines implicit surface representations with neural radiance fields.

Installation

You can create a conda environment called neural_rgbd using:

conda env create -f environment.yaml
conda activate neural_rgbd

Make sure to clone the external Marching Cubes dependency and install it in the same environment:

cd external/NumpyMarchingCubes
python setup.py install

You can run an optimization using:

python optimize.py --config configs/
   
    .txt

   

Data

The data needs to be in the following format:


   
                # args.datadir in the config file
├── depth               # raw (real data) or ground truth (synthetic data) depth images (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_filtered      # filtered depth images
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_with_noise    # depth images with synthetic noise and artifacts (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── images              # RGB images
    ├── img0.png     
    ├── img1.png
    ├── img2.png
    ...
├── focal.txt           # focal length
├── poses.txt           # ground truth poses (optional)
├── trainval_poses.txt  # camera poses used for optimization

   

The dataloader is hard-coded to load depth maps from the depth_filtered folder. These depth maps have been generated from the raw ones (or depth_with_noise in the case of synthetic data) using the same bilateral filter that was used by BundleFusion. The method also works with the raw depth maps, but the results are slightly degraded.

The file focal.txt contains a single floating point value representing the focal length of the camera in pixels.

The files poses.txt and trainval_poses.txt contain the camera matrices in the format 4N x 4, where is the number of cameras in the trajectory. Like the NeRF paper, we use the OpenGL convention for the camera's coordinate system. If you run this code on ScanNet data, make sure to transform the poses to the OpenGL system, since ScanNet used a different convention.

You can also write your own dataloader. You can use the existing load_scannet.py as template and update load_dataset.py.

Citation

If you use this code in your research, please consider citing:

@misc{azinović2021neural,
      title={Neural RGB-D Surface Reconstruction}, 
      author={Dejan Azinović and Ricardo Martin-Brualla and Dan B Goldman and Matthias Nießner and Justus Thies},
      year={2021},
      eprint={2104.04532},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Further information

The code is largely based on the original NeRF code by Mildenhall et al. https://github.com/bmild/nerf

The Marching Cubes implementation was adapted from the SPSG code by Dai et al. https://github.com/angeladai/spsg

Owner
Dejan
Dejan
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022