CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Overview

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Introduction

This master thesis used a few-shot meta learning approach to solve the problem of open-set template matching. In this thesis, template matching is treated as a classification problem, but having availability of just template as class representative. Work is based on non-parametric approach of meta-learning Prototypical Network and FEAT.

Installation

Running this code requires:

  1. PyTorch and TorchVision. Tested on version 1.8
  2. Numpy
  3. TensorboardX for visualization of results
  4. Initial weights to get better accuracy is stored in Google-drive. These weights will allow faster convergence of training. Weights are obtained using pre-training on mini-Imagenet dataset.
  5. Dataset: Dataset is private in this thesis. But can be replaced with own custom dataset or mini-Imagenet or CUB.

Dataset structure

Dataset structure will follow the other few-shot learning(FSL) benchmark as used in Prototypical Network or FEAT. For this thesis, custom dataset is used. In this dataset, a clean template image is used as a template and using this template a single shot learning model learn the class representation. Then we have other images which belongs to same template and they are classified as same class as in FSL. In dataset which is split in train, val and test, the first row of each class in CSV file should be a clean template and rest can be noisy images. The job of model is to pick one noisy image and classify them into a specific template/class, where model learned the class representation from one clean template. In original FSL model, they don't fix templates as first row in each class in CSV, as they do classification not template matching. If you want to test this model for template matching, you can replace dataset with public dataset mini-Imagenet or CUB. But in this case first image of each class will be treated as template, but nevertheless it can give you idea how FSL model work in template matching domain.

Code Structures

This model used Prototypical Network and FEAT model as base structure. Then these modes are modified for template matching and this is documented along the code structure for changes. Additionally, novel distance function is used which differs from above two SOTA models and codes are modified to incorporate these new distance function. To reproduce the result run train_fsl.py. By default, train_fsl.py commented the training part of code, so you can uncomment it to train them on custom dataset. There are four parts in the code.

  • model: It contains the main files of the code, including the few-shot learning trainer, the dataloader, the network architectures, and baseline and comparison models.
  • data: Can be used with public dataset or custom one. Splits can be taken as per Prototypical Network or based on new use case.
  • saves: The pre-trained initialized weights of ConvNet, Res-12,18 and 50.

Model Training and Testing

Use file name train_fsl.py to start the training, make sure command "trainer.train()" is not commented. Training parameters can be either changed in model/utils.py file or these parameters can be passed as command line argument.

Use file name train_fsl.py to start the testing, but this time comment the command "trainer.train()".

Note: in file train_fsl.py three variable contains the path of dataset and CSV file-

  • image_path: This is the path of the folder where images are kept.
  • split_path: Path where training and validation CSV is stored.
  • test_path: Complete path of testing CSV file without .csv extension.

Task Related Arguments (taken and modified from FEAT model)

  • dataset: default ScanImage used in this project. Other option can be selected based on your own dataset name.

  • way: The number of templates/classes in a few-shot task during meta-training, default to 5. N Templates can be treated as N class.

  • eval_way: The number of templates/classes in a few-shot task during meta-test, default to 5. This indicates that no. of possible templates/classes in which a scanned image can be matched into.

  • shot: Number of instances in each class in a few-shot task during meta-training, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • eval_shot: Number of instances in each class in a few-shot task during meta-test, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-training, default to 15

  • eval_query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-testing, default to 15

Optimization Related Arguments

  • max_epoch: The maximum number of training epochs, default to 2

  • episodes_per_epoch: The number of tasks sampled in each epoch, default to 100

  • num_eval_episodes: The number of tasks sampled from the meta-val set to evaluate the performance of the model (note that we fix sampling 10,000 tasks from the meta-test set during final evaluation), default to 200

  • lr: Learning rate for the model, default to 0.0001 with pre-trained weights

  • lr_mul: This is specially designed for set-to-set functions like FEAT. The learning rate for the top layer will be multiplied by this value (usually with faster learning rate). Default to 10

  • lr_scheduler: The scheduler to set the learning rate (step, multistep, or cosine), default to step

  • step_size: The step scheduler to decrease the learning rate. Set it to a single value if choose the step scheduler and provide multiple values when choosing the multistep scheduler. Default to 20

  • gamma: Learning rate ratio for step or multistep scheduler, default to 0.2

  • fix_BN: Set the encoder to the evaluation mode during the meta-training. This parameter is useful when meta-learning with the WRN. Default to False

  • augment: Whether to do data augmentation or not during meta-training, default to False

  • mom: The momentum value for the SGD optimizer, default to 0.9

  • weight_decay: The weight_decay value for SGD optimizer, default to 0.0005

Model Related Arguments (taken and modified from FEAT model)

  • model_class: Select if we are going to use Prototypical Network or FEAT network. Default to FEAT. Other option is ProtoNet

  • use_euclideanWithCosine: if this is set to true then distance function to compare template embedding and image is used is a weighted combination of euclidean distance + cosine similarity. Default calue is False

  • use_euclidean: Use the euclidean distance. Default to True. When set as False then cosine distance is used

  • backbone_class: Types of the encoder, i.e., the convolution network (ConvNet), ResNet-12 (Res12), or ResNet-18 (Res18) or ResNet-50(Res50), default to Res12

  • balance: This is the balance weight for the contrastive regularizer. Default to 0

  • temperature: Temperature over the logits, we #divide# logits with this value. It is useful when meta-learning with pre-trained weights. Default to 64. Lower temperature faster convergence but less accurate

  • temperature2: Temperature over the logits in the regularizer, we divide logits with this value. This is specially designed for the contrastive regularizer. Default to 64. Lower temperature faster convergence but less accurate

Other Arguments

  • orig_imsize: Whether to resize the images before loading the data into the memory. -1 means we do not resize the images and do not read all images into the memory. Default to -1

  • multi_gpu: Whether to use multiple gpus during meta-training, default to False

  • gpu: The index of GPU to use. Please provide multiple indexes if choose multi_gpu. Default to 0

  • log_interval: How often to log the meta-training information, default to every 50 tasks

  • eval_interval: How frequently to validate the model over the meta-val set, default to every 1 epoch

  • save_dir: The path to save the learned models, default to ./checkpoints

  • iterations: How many times model is evaluated in test time. Higher the better, due to less bias in results. Default to 100

Training scripts for FEAT

For example, to train the 1-shot 39-way FEAT model with ResNet-12 backbone on our custom dataset scanImage with euclidean distance as distance measure:

$ python train_fsl.py  --max_epoch 220 --model_class FEAT  --backbone_class Res12 --dataset ScanImage --way 38 --eval_way 39 --shot 1 --eval_shot 1 --query 15 --eval_query 1 --balance 1 --temperature 64 --temperature2 64 --lr 0.0002 --lr_mul 10 --lr_scheduler step --step_size 40 --gamma 0.5 --init_weights ./saves/initialization/scanimage/Res12-pre.pth --eval_interval 1 --use_euclidean --save_dir './saves' --multi_gpu --gpu 0 --iterations 3000 --num_workers 12

This command can be also be used to test the template matching model just change the eval_way as per number of target template at inference time. Then model will automaticaaly parse the final weight after training. As weight file name and folder is based on train time parameter name.

Note:

Since the dataset right now is private, in future if things changes we can release the datset as well. However, our final training weights are stored with file name ScanImage-FEAT-Res12-38w01s15q-Pre-DIS in Google drive.

Acknowledgment

Following repo codes, functions and research work were leveraged to develop this work package.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss the changes.

License

MIT

Owner
Kumar Manas
Working for traffic rule knowledge representation and explainable knowledge for autonomous driving.
Kumar Manas
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023