Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Overview

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

This is a official implementation of the CycleContrast introduced in the paper:Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Citation

If you find our work useful, please cite:

@article{wu2021contrastive,
  title={Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency},
  author={Wu, Haiping and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2105.06463},
  year={2021}
}

Preparation

Our code is tested on Python 3.7 and Pytorch 1.3.0, please install the environment via

pip install -r requirements.txt

Model Zoo

We provide the model pretrained on R2V2 for 200 epochs.

method pre-train epochs on R2V2 dataset ImageNet Top-1 Linear Eval OTB Precision OTB Success UCF Top-1 pretrained model
MoCo 200 53.8 56.1 40.6 80.5 pretrain ckpt
CycleContrast 200 55.7 69.6 50.4 82.8 pretrain ckpt

Run Experiments

Data preparation

Download R2V2 (Random Related Video Views) dataset according to https://github.com/danielgordon10/vince.

The direction structure should be as followed:

CycleContrast
├── cycle_contrast 
├── scripts 
├── utils 
├── data
│   ├── r2v2_large_with_ids 
│   │   ├── train 
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/
│   │   ├── val
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/

Unsupervised Pretrain

./scripts/train_cycle.sh

Downstream task - ImageNet linear eval

Prepare ImageNet dataset according to pytorch ImageNet training code.

MODEL_DIR=output/cycle_res50_r2v2_ep200
IMAGENET_DATA=data/ILSVRC/Data/CLS-LOC
./scripts/eval_ImageNet.sh $MODEL_DIR $IMAGENET_DATA

Downstream task - OTB tracking

Transfer to OTB tracking evaluation is based on SiamFC-Pytorch. Please prepare environment and data according to SiamFC-Pytorch

git clone https://github.com/happywu/mmaction2-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd mmaction2_tracking
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Downstream task - UCF classification

Transfer to UCF action recognition evaluation is based on AVID-CMA, prepare data and env according to AVID-CMA.

git clone https://github.com/happywu/AVID-CMA-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd AVID-CMA-CycleContrast 
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Acknowledgements

The codebase is based on FAIR-MoCo. The OTB tracking evaluation is based on MMAction2, SiamFC-PyTorch and vince. The UCF classification evaluation follows AVID-CMA.

Thank you all for the great open source repositories!

You might also like...
[ICCV'21] Official implementation for the paper  Social NCE: Contrastive Learning of Socially-aware Motion Representations
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Supervised Contrastive Learning for Downstream Optimized Sequence Representations
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss  Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022