L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

Overview

L3Cube-MahaCorpus

L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual corpus with 24.8M sentences and 289M tokens. We also present, MahaBERT, MahaAlBERT, and MahaRoBerta all BERT-based masked language models, and MahaFT, the fast text word embeddings both trained on full Marathi corpus with 752M tokens. The evaluation details are mentioned in our paper link

Dataset Statistics

L3Cube-MahaCorpus(full) = L3Cube-MahaCorpus(news) + L3Cube-MahaCorpus(non-news)

Full Marathi Corpus incorporates all existing sources .

Dataset #tokens(M) #sentences(M) Link
L3Cube-MahaCorpus(news) 212 17.6 link
L3Cube-MahaCorpus(non-news) 76.4 7.2 link
L3Cube-MahaCorpus(full) 289 24.8 link
Full Marathi Corpus(all sources) 752 57.2 link

Marathi BERT models and Marathi Fast Text model

The full Marathi Corpus is used to train BERT language models and made available on HuggingFace model hub.

Model Description Link
MahaBERT Base-BERT link
MahaRoBERTa RoBERTa link
MahaAlBERT AlBERT link
MahaFT Fast Text bin vec

L3CubeMahaSent

L3CubeMahaSent is the largest publicly available Marathi Sentiment Analysis dataset to date. This dataset is made of marathi tweets which are manually labelled. The annotation guidelines are mentioned in our paper link .

Dataset Statistics

This dataset contains a total of 18,378 tweets which are classified into three classes - Positive(1), Negative(-1) and Neutral(0). All tweets are present in their original form, without any preprocessing.

Out of these, 15,864 tweets are considered for splitting them into train(tweets-train.csv), test(tweets-test.csv) and validation(tweets-valid.csv) datasets. This has been done to avoid class imbalance in our dataset.
The remaining 2,514 tweets are also provided in a separate sheet(tweets-extra.csv).

The statistics of the dataset are as follows :

Split Total tweets Tweets per class
Train 12114 4038
Test 2250 750
Validation 1500 500

The extra sheet contains 2355 positive and 159 negative tweets. These tweets have not been considered during baseline experiments.

Baseline Experimentations

Two-class(positive,negative) and Three-class(positive,negative,neutral) sentiment analysis / classification was performed on the dataset.

Models

Some of the models used or performing baseline experiments were:

  • CNN, BiLSTM

    • fastText embeddings provided by IndicNLP and Facebook are also used along with the above two models. These embeddings are used in two variations: static and trainable.
  • BERT based models:

    • Multilingual BERT
    • IndicBERT

Results

Details of the best performing models are given in the following table:

Model 3-class 2-class
CNN IndicFT trainable 83.24 93.13
BiLSTM IndicFT trainable 82.89 91.80
IndicBERT 84.13 92.93

The fine-tuned IndicBERT model is available on huggingface here . Further details about the dataset and baseline experiments can be found in this paper pdf .

License

L3Cube-MahaCorpus and L3CubeMahaSent is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citing

@article{joshi2022l3cube,
  title={L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources},
  author={Joshi, Raviraj},
  journal={arXiv preprint arXiv:2202.01159},
  year={2022}
}
@inproceedings{kulkarni2021l3cubemahasent,
  title={L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Joshi, Raviraj},
  booktitle={Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis},
  pages={213--220},
  year={2021}
}
@inproceedings{kulkarni2022experimental,
  title={Experimental evaluation of deep learning models for marathi text classification},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Jagdale, Jayashree and Joshi, Raviraj},
  booktitle={Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications},
  pages={605--613},
  year={2022},
  organization={Springer}
}
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022