This is the source code of RPG (Reward-Randomized Policy Gradient)

Related tags

Text Data & NLPRPG
Overview

RPG (Reward-Randomized Policy Gradient)

Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (* equal contribution)

Website: https://sites.google.com/view/staghuntrpg

This is the source code for RPG (Reward-Randomized Policy Gradient), which is proposed in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization"(https://arxiv.org/abs/2103.04564).

1. Supported environments

1.1 Agar.io

Agar is a popular multi-player online game. Players control one or more cells in a Petri dish. The goal is to gain as much mass as possible by eating cells smaller than the player's cell while avoiding being eaten by larger ones. Larger cells move slower. Each player starts with one cell but can split a sufficiently large cell into two, allowing them to control multiple cells. The control is performed by mouse motion: all the cells of a player move towards the mouse position.

We transform the Free-For-All (FFA) mode of Agar (https://agar.io/) into an Reinforcement Learning (RL) environment and we believe it can be utilized as a new Multi-agent RL testbed for a wide range of problems, such as cooperation, team formation, intention modeling, etc. If you want to use Agar.io as your testbed, welcome to visit the agar repository: https://github.com/staghuntrpg/agar.

1.2 Grid World

  • Monster-Hunt In Monster-Hunt, there is a monster and two apples. The monster keeps moving towards its closest agent while apples are static. When a single agent meets the monster, it losses a penalty of 2; if two agents catch the monster at the same time, they both earn a bonus of 5. Eating an apple always gives an agent a bonus of 2. Whenever an apple is eaten or the monster meets an agent, the apple or the monster will respawn randomly. The monster may move over the apple during the chase, in this case, the agent will gain the sum of points if it catches the monster and the apple exactly.

  • Escalation In Escalation, two agents appear randomly and one grid lights up at the initialization. If two agents step on the lit grid simultaneously, each agent can gain 1 point, and the lit grid will go out with an adjacent grid lighting up. Both agents can gain 1 point again if they step on the next lit grid together. But if one agent steps off the path, the other agent will lose 0.9L points, where L is the current length of stepping together, and the game is over. Another option is that two agents choose to step off the path simultaneously, neither agent will be punished, and the game continues.

2. Usage

git clone https://github.com/staghuntrpg/RPG.git --recursive

Tips: Please don't forget the --recursive in the command, or else you will not have Agar.io environment in your fold.

This repository is separated into two folds, GridWorld and Agar, corresponding to the environments used in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization". The installation&training instructions can be found in the subfolders of each environment.

3. Publication

If you find this repository useful, please cite our paper:

@misc{tang2021discovering,
      title={Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization}, 
      author={Zhenggang Tang and Chao Yu and Boyuan Chen and Huazhe Xu and Xiaolong Wang and Fei Fang and Simon Du and Yu Wang and Yi Wu},
      year={2021},
      eprint={2103.04564},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis μ™œ ν•œκ΅­μ–΄ 감정 닀쀑뢄λ₯˜ λͺ¨λΈμ€ 거의 μ—†λŠ” κ²ƒμΌκΉŒ?μ—μ„œ μ‹œμž‘λœ ν”„λ‘œμ νŠΈ Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization πŸ“₯ Download Datasets πŸ“₯ Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022