Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Overview

Introduction

Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, Funnel-Transformer usually has a higher capacity given the same FLOPs. In addition, with a decoder, Funnel-Transformer is able to recover the token-level deep representation for each token from the reduced hidden sequence, which enables standard pretraining.

For a detailed description of technical details and experimental results, please refer to our paper:

Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Zihang Dai*, Guokun Lai*, Yiming Yang, Quoc V. Le

(*: equal contribution)

Preprint 2020

Source Code

Data Download

  • The corresponding source code and instructions are in the data-scrips folder, which specifies how to access the raw data we used in this work.

TensorFlow

  • The corresponding source code is in the tensorflow folder, which was developed and exactly used for TPU pretraining & finetuning as presented in the paper.
  • The TensorFlow funetuning code mainly supports TPU finetuining on GLUE benchmark, text classification, SQuAD and RACE.
  • Please refer to tensorflow/README.md for details.

PyTorch

  • The source code is in the pytorch folder, which only serves as an example PyTorch implementation of Funnel-Transformer.
  • Hence, the PyTorch code only supports GPU finetuning for the GLUE benchmark & text classification.
  • Please refer to pytorch/README.md for details.

Pretrained models

Model Size PyTorch TensorFlow TensorFlow-Full
B10-10-10H1024 Link Link Link
B8-8-8H1024 Link Link Link
B6-6-6H768 Link Link Link
B6-3x2-3x2H768 Link Link Link
B4-4-4H768 Link Link Link

Each .tar.gz file contains three items:

  • A TensorFlow or PyTorch checkpoint (model.ckpt-* or model.ckpt.pt) checkpoint containing the pre-trained weights (Note: The TensorFlow checkpoint actually corresponds to 3 files).
  • A Word Piece model (vocab.uncased.txt) used for (de)tokenization.
  • A config file (net_config.json or net_config.pytorch.json) which specifies the hyperparameters of the model.

You also can use download_all_ckpts.sh to download all checkpoints mentioned above.

For how to use the pretrained models, please refer to tensorflow/README.md or pytorch/README.md respectively.

Results

glue-dev

qa

Owner
GUOKUN LAI
GUOKUN LAI
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022