coldcuts is an R package to automatically generate and plot segmentation drawings in R

Overview

R-CMD-check

coldcuts

coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays.

The name is inspired by one of Italy's best products.

🎓 You can find the documentation and a tutorial to get started at the package's page: https://langleylab.github.io/coldcuts

🗂 You can find additional segmentation files, ontologies and other information at https://langleylab.github.io/coldcuts/articles/segmentations.html

📄 You can read the preprint on arXiv at https://arxiv.org/abs/2201.10116

Citation

If you use coldcuts in your research, cite the preprint:

Giuseppe D'Agostino and Sarah Langley, Automated brain parcellation rendering and visualization in R with coldcuts, arXiv 2022, arXiv:2201.10116

Motivation

When dealing with neuroimaging data, or any other type of numerical data derived from brain tissues, it is important to situate it in its anatomical and structural context. Various authors provide parcellations or segmentations of the brain, according to their best interpretation of which functional and anatomical boundaries make sense for our understanding of the brain. There are several stand-alone tools that allow to visualize and manipulate segmentations. However, neuroimaging data, together with other functional data such as transcriptomics, is often manipulated in a statistical programming language such as R which does not have trivial implementations for the visualization of segmentations.

To bridge this gap, some R packages have been recently published:

  • ggseg by Athanasia Mo Mowinckel and Didac Vidal-Piñeiro
  • cerebroViz by Ethan Bahl, Tanner Koomar, and Jacob J Michaelson
  • fsbrain by Tim Schäfer and Christine Ecker

ggseg and cerebroviz offer 2D (and 3D in the case of ggseg3d) visualizations of human brain segmentations, with the possibility of integration with external datasets. These segmentations are manually curated, which means that new datasets must be manually inserted, and they are limited to the human brain in scope. ggseg in particular has made available several segmentations of human cortical surface atlases. fsbrain focuses on 3D visualization of human MRI data with external data integration and visualization in both native space and transformed spaces. It does not depend on manually curated datastes (beyond segmentations).

While these tools provide a wealth of beautiful visualization interfaces, we felt the need to implement a tool to systematically create 2D (and potentially 3D) objects that are easily shared and manipulated in R, with the addition of labels, external datasets and simple operations such as subsetting and projecting, with minimal need for manual curation and without limiting ourselves to a particular species.

Thus, coldcuts is our attempt at bridging the gap between imaging/high throughput brain data and R through data visualization.

Installing the package

⬇️ You can install this package using devtools::install_github():

devtools::install_github("langleylab/coldcuts")

Nota bene: coldcuts uses smoothr to smooth 2D polygons. This package requires the installation of terra which has some system dependencies for spatial data, such as GDAL, GEOS and PROJ that can sometimes be difficult to install, especially in machines on which you do not have admin rights.

One possible workaround when you do not have admin rights is to use conda virtual environments to install GDAL and other libraries using the conda-forge channel: link

Getting started

🏃🏽‍♀️ You can find a small example to get started here

The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022