The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

Overview

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]

Release Notes

The offical PyTorch implementation of NeMo, published on ICLR 2021. NeMo achieves robust 3D pose estimation method by performing render-and-compare on the level of neural network features. Example figure The figure shows a dynamic example of the pose optimization process of NeMo. Top-left: the input image; Top-right: A mesh superimposed on the input image in the predicted 3D pose. Bottom-left: The occluder location as predicted by NeMo, where yellow is background, green is the non-occluded area and red is the occluded area of the object. Bottom-right: The loss landscape as a function of each camera parameter respectively. The colored vertical lines demonstrate the current prediction and the ground-truth parameter is at center of x-axis.

Installation

The code is tested with python 3.7, PyTorch 1.5 and PyTorch3D 0.2.0.

Clone the project and install requirements

git clone https://github.com/Angtian/NeMo.git
cd NeMo
pip install -r requirements.txt

Running NeMo

We provide the scripts to train NeMo and to perform inference with NeMo on Pascal3D+ and the Occluded Pascal3D+ datasets. For more details about the OccludedPascal3D+ please refer to this Github repo: OccludedPASCAL3D.

Step 1: Prepare Datasets
Set ENABLE_OCCLUDED to "true" if you need evaluate NeMo under partial occlusions. You can change the path to the datasets in the file PrepareData.sh, after downloading the data. Otherwise this script will automatically download datasets.
Then run the following commands:

chmod +x PrepareData.sh
./PrepareData.sh

Step 2: Training NeMo
Modify the settings in TrainNeMo.sh.
GPUS: set avaliable GPUs for training depending on your machine. The standard setting uses 7 gpus (6 for the backbone, 1 for the feature bank). If you have only 4 GPUs available, we suggest to turn off the "--sperate_bank" in training stage.
MESH_DIMENSIONS: "single" or "multi".
TOTAL_EPOCHS: The default setting is 800 epochs, which takes 3 to 4 days to train on an 8 GPUs machine. However, 400 training epochs could already yield good accuracy. The final performance for the raw Pascal3D+ over train epochs (SingleCuboid):

Training Epochs 200 400 600 800
Acc Pi / 6 82.4 84.4 84.8 85.5
Acc Pi / 18 57.1 59.2 59.6 60.2

Then, run these commands:

chmod +x TrainNeMo.sh
./TrainNeMo.sh

Step 2 (Alternative): Download Pretrained Model
Here we provide the pretrained NeMo Model and backbone for the "SingleCuboid" setting. Run the following commands to download the pretrained model:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1X1NCx22TFGJs108TqDgaPqrrKlExZGP-' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1X1NCx22TFGJs108TqDgaPqrrKlExZGP-" -O NeMo_Single_799.zip
unzip NeMo_Single_799.zip

Step 3: Inference with NeMo
The inference stage includes feature extraction and pose optimization. The pose optimization conducts render-and-compare on the neural features w.r.t. the camera pose iteratively. This takes some time to run on the full dataset (3-4 hours for each occlusion level on a 8 GPU machine).
To run the inference, you need to first change the settings in InferenceNeMo.sh:
MESH_DIMENSIONS: Set to be same as the training stage.
GPUS: Our implemention could either utilize 4 or 8 GPUs for the pose optimization. We will automatically distribute workloads over available GPUs and run the optimization in parallel.
LOAD_FILE_NAME: Change this setting if you do not train 800 epochs, e.g. train NeMo for 400 -> "saved_model_%s_399.pth".

Then, run these commands to conduct NeMo inference on unoccluded Pascal3D+:

chmod +x InferenceNeMo.sh
./InferenceNeMo.sh

To conduct inference on the occluded-Pascal3D+ (Note you need enable to create OccludedPascal3D+ dataset during data preparation):

./InferenceNeMo.sh FGL1_BGL1
./InferenceNeMo.sh FGL2_BGL2
./InferenceNeMo.sh FGL3_BGL3

Citation

Please cite the following paper if you find this the code useful for your research/projects.

@inproceedings{wang2020NeMo,
title = {NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation},
author = {Angtian, Wang and Kortylewski, Adam and Yuille, Alan},
booktitle = {Proceedings International Conference on Learning Representations (ICLR)},
year = {2021},
}
Owner
Angtian Wang
PhD student at Johns Hopkins University, my main focus includes Computer Vision and Deep Learning.
Angtian Wang
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022