Experiment about Deep Person Re-identification with EfficientNet-v2

Overview

deep-efficient-person-reid

Experiment for an uni project with strong baseline for Person Re-identification task.

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.


Pipeline

pipeline


Implementation Details

  • Random Erasing to transform input images.
  • EfficientNet-v2 / Resnet50 / Resnet50-IBN-A as backbone.
  • Stride = 1 for last convolution layer. Embedding size for Resnet50 / Resnet50-IBN-A is 2048, while for EfficientNet-v2 is 1280. During inference, embedding features will run through a batch norm layer, as known as a bottleneck for better normalization.
  • Loss function combining 3 losses:
    1. Triplet Loss with Hard Example Mining.
    2. Classification Loss (Cross Entropy) with Label Smoothing.
    3. Centroid Loss - Center Loss for reducing the distance of embeddings to its class center. When combining it with Classification Loss, it helps preventing embeddings from collapsing.
  • The default optimizer is AMSgrad with base learning rate of 3.5e-4 and multistep learning rate scheduler, decayed at epoch 30th and epoch 55th. Besides, we also apply mixed precision in training.
  • In both datasets, pretrained models were trained for 60 epochs and non-pretrained models were trained for 100 epochs.

Source Structure

.
├── config                  # hyperparameters settings
│   └── ...                 # yaml files
├
├── datasets                # data loader
│   └── ...           
├
├── market1501              # market-1501 dataset
|
├── cuhk03_release          # cuhk03 dataset
|
├── samplers                # random samplers
│   └── ...
|
├── loggers                 # test weights and visualization results      
|   └── runs
|   
├── losses                  # loss functions
│   └── ...   
|
├── nets                    # models
│   └── bacbones            
│       └── ... 
│   
├── engine                  # training and testing procedures
│   └── ...    
|
├── metrics                 # mAP and re-ranking
│   └── ...   
|
├── utils                   # wrapper and util functions 
│   └── ...
|
├── train.py                # train code 
|
├── test.py                 # test code 
|
├── visualize.py            # visualize results 

Pretrained Models (on ImageNet)

  • EfficientNet-v2: link
  • Resnet50-IBN-A: link

Notebook

  • Notebook to train, inference and visualize: Notebook

Setup


  • Install dependencies, change directory to dertorch:
pip install -r requirements.txt
cd dertorch/

  • Modify config files in /configs/. You can play with the parameters for better training, testing.

  • Training:
python train.py --config_file=name_of_config_file
Ex: python train.py --config_file=efficientnetv2_market

  • Testing: Save in /loggers/runs, for example the result from EfficientNet-v2 (Market-1501): link
python test.py --config_file=name_of_config_file
Ex: python test.py --config_file=efficientnetv2_market

  • Visualization: Save in /loggers/runs/results/, for example the result from EfficienNet-v2 (Market-1501): link
python visualize.py --config_file=name_of_config_file
Ex: python visualize.py --config_file=efficientnetv2_market

Examples


Query image 1 query1


Result image 1 result1


Query image 2 query2


Result image 2 result2


Results

  • Market-1501
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) 256x128 51.8 74.0 88.2 93.0 link
EfficientNet-v2 (non-pretrained) 256x128 56.5 78.5 91.1 94.4 link
Resnet50-IBN-A 256x128 77.1 90.7 97.0 98.4 link
EfficientNet-v2 256x128 69.7 87.1 95.3 97.2 link
Resnet50-IBN-A + Re-ranking 256x128 89.8 92.1 96.5 97.7 link
EfficientNet-v2 + Re-ranking 256x128 85.6 89.9 94.7 96.2 link

  • CUHK03:
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) ... ... ... ... ... ...
EfficientNet-v2 (non-pretrained) 256x128 10.1 10.1 21.1 29.5 link
Resnet50-IBN-A 256x128 41.2 41.8 63.1 71.2 link
EfficientNet-v2 256x128 40.6 42.9 63.1 72.5 link
Resnet50-IBN-A + Re-ranking 256x128 55.6 51.2 64.0 72.0 link
EfficientNet-v2 + Re-ranking 256x128 56.0 51.4 64.7 73.4 link

The results from EfficientNet-v2 models might be better if fine-tuning properly and longer training epochs, while here we use the best parameters for the ResNet models (on Market-1501 dataset) from this paper and only trained for 60 - 100 epochs.


Citation

@article{DBLP:journals/corr/abs-2104-13643,
  author    = {Mikolaj Wieczorek and
               Barbara Rychalska and
               Jacek Dabrowski},
  title     = {On the Unreasonable Effectiveness of Centroids in Image Retrieval},
  journal   = {CoRR},
  volume    = {abs/2104.13643},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13643},
  archivePrefix = {arXiv},
  eprint    = {2104.13643},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13643.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}

Adapted from: michuanhaohao

Owner
lan.nguyen2k
Tensor Boy
lan.nguyen2k
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022