Demonstrates iterative FGSM on Apple's NeuralHash model.

Overview

apple-neuralhash-attack

Demonstrates iterative FGSM on Apple's NeuralHash model.

TL;DR: It is possible to apply noise to CSAM images and make them look like regular images to the NeuralHash model. The noise does degrade the CSAM image (see samples). But this was achieved without tuning learning rate and there are more refined attacks available too.

Example

Here is an example that uses a Grumpy Cat image in place of a CSAM image. The attack adds noise to the Grumpy Cat image and makes the model see it as a Doge image.

As a result, both of these images have the same neural hash of 11d9b097ac960bd2c6c131fa, computed via ONNX Runtime, with the script by AsuharietYgvar/AppleNeuralHash2ONNX.

doge adv_cat

More generally, because the attack optimizes the model output, the adversarial image will generate largely the same hash as the good image, regardless of the seed.

Instructions

Get ONNX model

Obtain the ONNX model from AsuharietYgvar/AppleNeuralHash2ONNX. You should have a path to a model.onnx file.

Convert ONNX model to TF model

Then convert the ONNX model to a Tensorflow model by first installing the onnx_tf library via onnx/onnx-tensorflow. Then run the following:

python3 convert.py -o /path/to/model.onnx

This will save a Tensorflow model to the current directory as model.pb.

Run adversarial attack

Finally, run the adversarial attack with the following:

python3 nnhash_attack.py --seed /path/to/neuralhash_128x96_seed1.dat

Other arguments:

-m           Path to Tensorflow model (defaults to "model.pb")
--good       Path to good image (defaults to "samples/doge.png")
--bad        Path to bad image (defaults to "samples/grumpy_cat.png")
--lr         Learning rate (defaults to 3e-1)
--save_every Save every interval (defaults to 2000)

This will save generated images to samples/iteration_{i}.png.

Note that the hash similarity may decrease initially before increasing again.

Also, for the sample images and with default parameters, the hash was identical after 28000 iterations.

Terminal output:

# Some Tensorflow boilerplate...
Iteration #2000: L2-loss=134688, Hash Similarity=0.2916666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20f1089728150af2ca2de49a
Saving image to samples/iteration2000.png...
Iteration #4000: L2-loss=32605, Hash Similarity=0.41666666666666677
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2cfe170da
Saving image to samples/iteration4000.png...
Iteration #6000: L2-loss=18547, Hash Similarity=0.4166666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2c7c1f0de
Saving image to samples/iteration6000.png...

Credit

Owner
Lim Swee Kiat
Lim Swee Kiat
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Akshat Surolia 2 May 11, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022