Ensemble Visual-Inertial Odometry (EnVIO)

Related tags

Deep Learningenvio
Overview

Ensemble Visual-Inertial Odometry (EnVIO)

Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park

1. Overview

This is a ROS package of Ensemble Visual-Inertial Odometry (EnVIO) written in C++. It features a photometric (direct) measurement model and stochastic linearization that are implemented by iterated extended Kalman filter fully built on the matrix Lie group. EnVIO takes time-synced stereo images and IMU readings as input and outputs the current vehicle pose and feature depths at the current camera frame with their estimated uncertainties.

Video Label

2. Build

  • This package was tested on Ubuntu 16.04 (ROS Kinetic) with Eigen 3.3.7 for matrix computation and OpenCV 3.3.1 for image processing in C++11.
  • There are no additional dependencies, we hope this package can be built without any difficulties in different environments.
  • We use the catkin build system :
cd catkin_ws
catkin_make

3. Run (EuRoC example)

  • Configuration and launch files are prepared in config/euroc/camchain-imucam-euroc.yaml and launch/nesl_envio_euroc.launch.
  • The configuration files are output by Kalibr toolbox.
  • Filter and image processing parameters are set from the launch file.
  • Please note that our filter implementation requires static state at the beginning to initialize tilt angles, velocity and gyroscope biases. The temporal window for this process can be set by num_init_samples in the launch file.
  • As default our package outputs est_out.txt that includes estimated states.
roslaunch ensemble_vio nesl_envio_euroc.launch
roslaunch ensemble_vio nesl_envio_rviz.launch
rosbag play rosbag.bag

4. Run your own device

  • Our implementation assumes that stereo camera is hardware-synced and the spatio-temporal parameters for cameras and IMU are calibrated as it is a critical step in sensor fusion.
  • You can calibrate your visual-inertial sensor using Kalibr toolbox and place the output file in config.
  • The input ROS topics and filter parameters are set in launch.
  • With low cost IMUs as in EuRoC sensor suite, you can use the default parameters of EuRoC example file.

5. Citation

If you feel this work helpful to your academic research, we kindly ask you to cite our paper :

@article{EnVIO_TRO,
  title={Photometric Visual-Inertial Navigation with Uncertainty-Aware Ensembles},
  author={Jung, Jae Hyung and Choe, Yeongkwon and Park, Chan Gook},
  journal={IEEE Transactions on Robotics},
  year={2022},
  publisher={IEEE}
}

6. Acknowledgements

This research was supported in part by Unmanned Vehicle Advanced Research Center funded by the Ministry of Science and ICT, the Republic of Korea and in part by Hyundai NGV Company.

7. License

Our source code is released under GPLv3 license. If there are any issues in our source code please contact to the author ([email protected]).

Owner
Jae Hyung Jung
Jae Hyung Jung
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
2 Jul 19, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022