PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Overview

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot

Description

This is an inference sample written in PyTorch of the original Theano/Lasagne code.

I recreated the network as described in the paper of Karras et al. Since some layers seemed to be missing in PyTorch, these were implemented as well. The network and the layers can be found in model.py.

For the demo, a 100-celeb-hq-1024x1024-ours snapshot was used, which was made publicly available by the authors. Since I couldn't find any model converter between Theano/Lasagne and PyTorch, I used a quick and dirty script to transfer the weights between the models (transfer_weights.py).

This repo does not provide the code for training the networks.

Simple inference

To run the demo, simply execute predict.py. You can specify other weights with the --weights flag.

Example image:

Example image

Latent space interpolation

To try the latent space interpolation, use latent_interp.py. All output images will be saved in ./interp.

You can chose between the "gaussian interpolation" introduced in the original paper and the "slerp interpolation" introduced by Tom White in his paper Sampling Generative Networks using the --type argument.

Use --filter to change the gaussian filter size for the gaussian interpolation and --interp for the interpolation steps for the slerp interpolation.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --output - Directory for storing interpolated images
  • --batch_size - batch size for DataLoader
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

The total number of generated frames depends on the used interpolation technique.

For gaussian interpolation the number of generated frames equals nb_latents, while the slerp interpolation generates nb_latents * interp frames.

Example interpolation:

Example interpolation

Live latent space interpolation

A live demo of the latent space interpolation using PyGame can be seen in pygame_interp_demo.py.

Use the --size argument to change the output window size.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --size - PyGame window size
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

Transferring weights

The pretrained lasagne weights can be transferred to a PyTorch state dict using transfer_weights.py.

To transfer other snapshots from the paper (other than CelebA), you have to modify the model architecture accordingly and use the corresponding weights.

Environment

The code was tested on Ubuntu 16.04 with an NVIDIA GTX 1080 using PyTorch v.0.2.0_4.

  • transfer_weights.py needs Theano and Lasagne to load the pretrained weights.
  • pygame_interp_demo.py needs PyGame to visualize the output

A single forward pass took approx. 0.031 seconds.

Links

License

This code is a modified form of the original code under the CC BY-NC license with the following copyright notice:

# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

According the Section 3, I hereby identify Tero Karras et al. and NVIDIA as the original authors of the material.

Owner
Deep Learning Frameworks @NVIDIA
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023