PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Overview

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot

Description

This is an inference sample written in PyTorch of the original Theano/Lasagne code.

I recreated the network as described in the paper of Karras et al. Since some layers seemed to be missing in PyTorch, these were implemented as well. The network and the layers can be found in model.py.

For the demo, a 100-celeb-hq-1024x1024-ours snapshot was used, which was made publicly available by the authors. Since I couldn't find any model converter between Theano/Lasagne and PyTorch, I used a quick and dirty script to transfer the weights between the models (transfer_weights.py).

This repo does not provide the code for training the networks.

Simple inference

To run the demo, simply execute predict.py. You can specify other weights with the --weights flag.

Example image:

Example image

Latent space interpolation

To try the latent space interpolation, use latent_interp.py. All output images will be saved in ./interp.

You can chose between the "gaussian interpolation" introduced in the original paper and the "slerp interpolation" introduced by Tom White in his paper Sampling Generative Networks using the --type argument.

Use --filter to change the gaussian filter size for the gaussian interpolation and --interp for the interpolation steps for the slerp interpolation.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --output - Directory for storing interpolated images
  • --batch_size - batch size for DataLoader
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

The total number of generated frames depends on the used interpolation technique.

For gaussian interpolation the number of generated frames equals nb_latents, while the slerp interpolation generates nb_latents * interp frames.

Example interpolation:

Example interpolation

Live latent space interpolation

A live demo of the latent space interpolation using PyGame can be seen in pygame_interp_demo.py.

Use the --size argument to change the output window size.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --size - PyGame window size
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

Transferring weights

The pretrained lasagne weights can be transferred to a PyTorch state dict using transfer_weights.py.

To transfer other snapshots from the paper (other than CelebA), you have to modify the model architecture accordingly and use the corresponding weights.

Environment

The code was tested on Ubuntu 16.04 with an NVIDIA GTX 1080 using PyTorch v.0.2.0_4.

  • transfer_weights.py needs Theano and Lasagne to load the pretrained weights.
  • pygame_interp_demo.py needs PyGame to visualize the output

A single forward pass took approx. 0.031 seconds.

Links

License

This code is a modified form of the original code under the CC BY-NC license with the following copyright notice:

# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

According the Section 3, I hereby identify Tero Karras et al. and NVIDIA as the original authors of the material.

Owner
Deep Learning Frameworks @NVIDIA
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022