Isaac Gym Environments for Legged Robots

Related tags

Hardwarelegged_gym
Overview

Isaac Gym Environments for Legged Robots

This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain using NVIDIA's Isaac Gym. It includes all components needed for sim-to-real transfer: actuator network, friction & mass randomization, noisy observations and random pushes during training.
Maintainer: Nikita Rudin
Affiliation: Robotic Systems Lab, ETH Zurich
Contact: [email protected]

Useful Links

Project website: https://leggedrobotics.github.io/legged_gym/ Paper: https://arxiv.org/abs/2109.11978

Installation

  1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)
  2. Install pytorch 1.10 with cuda-11.3:
    • pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
  3. Install Isaac Gym
    • Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym
    • cd isaacgym_lib/python && pip install -e .
    • Try running an example python examples/1080_balls_of_solitude.py
    • For troubleshooting check docs isaacgym/docs/index.html)
  4. Install rsl_rl (PPO implementation)
  5. Install legged_gym
    • Clone this repository
    • cd legged_gym && git checkout develop && pip install -e .

CODE STRUCTURE

  1. Each environment is defined by an env file (legged_robot.py) and a config file (legged_robot_config.py). The config file contains two classes: one conatianing all the environment parameters (LeggedRobotCfg) and one for the training parameters (LeggedRobotCfgPPo).
  2. Both env and config classes use inheritance.
  3. Each non-zero reward scale specified in cfg will add a function with a corresponding name to the list of elements which will be summed to get the total reward.
  4. Tasks must be registered using task_registry.register(name, EnvClass, EnvConfig, TrainConfig). This is done in envs/__init__.py, but can also be done from outside of this repository.

Usage

  1. Train:
    python issacgym_anymal/scripts/train.py --task=anymal_c_flat
    • To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible).
    • To run headless (no rendering) add --headless.
    • Important: To improve performance, once the training starts press v to stop the rendering. You can then enable it later to check the progress.
    • The trained policy is saved in issacgym_anymal/logs/ / _ /model_ .pt . Where and are defined in the train config.
    • The following command line arguments override the values set in the config files:
    • --task TASK: Task name.
    • --resume: Resume training from a checkpoint
    • --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
    • --run_name RUN_NAME: Name of the run.
    • --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
    • --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
    • --num_envs NUM_ENVS: Number of environments to create.
    • --seed SEED: Random seed.
    • --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
  2. Play a trained policy:
    python issacgym_anymal/scripts/play.py --task=anymal_c_flat
    • By default the loaded policy is the last model of the last run of the experiment folder.
    • Other runs/model iteration can be selected by setting load_run and checkpoint in the train config.

Adding a new environment

The base environment legged_robot implements a rough terrain locomotion task. The corresponding cfg does not specify a robot asset (URDF/ MJCF) and no reward scales.

  1. Add a new folder to envs/ with ' _config.py , which inherit from an existing environment cfgs
  2. If adding a new robot:
    • Add the corresponding assets to resourses/.
    • In cfg set the asset path, define body names, default_joint_positions and PD gains. Specify the desired train_cfg and the name of the environment (python class).
    • In train_cfg set experiment_name and run_name
  3. (If needed) implement your environment in .py, inherit from an existing environment, overwrite the desired functions and/or add your reward functions.
  4. Register your env in isaacgym_anymal/envs/__init__.py.
  5. Modify/Tune other parameters in your cfg, cfg_train as needed. To remove a reward set its scale to zero. Do not modify parameters of other envs!

Troubleshooting

  1. If you get the following error: ImportError: libpython3.8m.so.1.0: cannot open shared object file: No such file or directory, do: sudo apt install libpython3.8

Known Issues

  1. The contact forces reported by net_contact_force_tensor are unreliable when simulating on GPU with a triangle mesh terrain. A workaround is to use force sensors, but the force are propagated through the sensors of consecutive bodies resulting in an undesireable behaviour. However, for a legged robot it is possible to add sensors to the feet/end effector only and get the expected results. When using the force sensors make sure to exclude gravity from trhe reported forces with sensor_options.enable_forward_dynamics_forces. Example:
    sensor_pose = gymapi.Transform()
    for name in feet_names:
        sensor_options = gymapi.ForceSensorProperties()
        sensor_options.enable_forward_dynamics_forces = False # for example gravity
        sensor_options.enable_constraint_solver_forces = True # for example contacts
        sensor_options.use_world_frame = True # report forces in world frame (easier to get vertical components)
        index = self.gym.find_asset_rigid_body_index(robot_asset, name)
        self.gym.create_asset_force_sensor(robot_asset, index, sensor_pose, sensor_options)
    (...)

    sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
    self.gym.refresh_force_sensor_tensor(self.sim)
    force_sensor_readings = gymtorch.wrap_tensor(sensor_tensor)
    self.sensor_forces = force_sensor_readings.view(self.num_envs, 4, 6)[..., :3]
    (...)

    self.gym.refresh_force_sensor_tensor(self.sim)
    contact = self.sensor_forces[:, :, 2] > 1.
Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
A Home Assistant sensor that tells you what holiday is next

Next Holiday Sensor This sensor tells you what holiday is coming up next. You can use it to set holiday light colors or other scenes. The state of the

Nick Touran 20 Dec 04, 2022
This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC

About This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC, issue #56 and f

Philippe Teuwen 28 Nov 21, 2022
The project is an open-source and low-cost kit to get started with underactuated robotics.

Torque Limited Simple Pendulum Introduction The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets

34 Dec 14, 2022
Python information display framework aimed at e-ink devices

My display, using a Raspberry Pi Zero W and Waveshare 6" e-paper hat infodisplay Modular information display framework aimed at e-ink devices. Built u

Niek Blankers 3 Apr 08, 2022
Terkin is a flexible data logger application for MicroPython and CPython environments.

Terkin Data logging for humans, written in MicroPython. Documentation: https://terkin.org/ Source Code: https://github.com/hiveeyes/terkin-datalogger

hiveeyes 45 Dec 15, 2022
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
Electrolux Pure i9 robot vacuum integration for Home Assistant.

Home Assistant Pure i9 This repository integrates your Electrolux Pure i9 robot vacuum with the smart home platform Home Assistant. The integration co

Niklas Ekman 15 Dec 22, 2022
It is a program that displays the current temperature of the GPU and CPU in real time and stores the temperature history.

HWLogger It is a program that displays the current temperature of the GPU and CPU in real time and stores the temperature history. Sample Usage Run HW

Xeros 0 Apr 05, 2022
circuitpython version of PyBasic for microcontrollers

cPyBasic Circuitpython version of PyBasic for microcontrollers Current version work only for Adafruit titano & CardKB for now. The origninal PyBasic w

BeBoXoS 3 Nov 14, 2021
A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

3 Feb 19, 2022
An open source two key macro-pad modeled to look like a cartoony melting popsicle

macropopsicle An open source two key macro-pad modeled to look like a cartoony melting popsicle. Build instructions Parts List -1x Top case half (3D p

17 Aug 18, 2022
Micro Displays for Raspberry Pi

micro-displays Micro Displays for Raspberry Pi Why? I'm super bored in lockdown. Add a Raspberry Pi 400 and a few tiny displays... The top half of the

ig 291 Jul 06, 2022
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Mark McIntyre 64 Oct 11, 2022
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
Create (templateable) cameras that display qr codes in homeassistant

QRCam This custom component creates cameras displaying qrcodes. The QRCodes can be static or generated from templates. If you use a template as conten

Jannes Müller 5 Oct 06, 2022
Automatic CPU speed & power optimizer for Linux

Automatic CPU speed & power optimizer for Linux based on active monitoring of laptop's battery state, CPU usage, CPU temperature and system load. Ultimately allowing you to improve battery life witho

Adnan Hodzic 3.4k Jan 07, 2023
Water quality integration for Home Assistant with data provided by Budapest FVM

Water Quality FVM (Budapest, HU) custom integration for Home Assistant This custom component integrates water quality information provided by Budapest

Atticus Maximus 3 Dec 23, 2021
Alternative firmware for ESP8266 with easy configuration using webUI, OTA updates, automation using timers or rules, expandability and entirely local control over MQTT, HTTP, Serial or KNX. Full documentation at

Alternative firmware for ESP8266/ESP32 based devices with easy configuration using webUI, OTA updates, automation using timers or rules, expandability

Theo Arends 59 Dec 26, 2022
Iec62056-21-mqtt - Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT

IEC 62056-21 Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT. -21 is

Marijn Suijten 1 Jun 05, 2022