Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

Overview

System for Sorting and Recycling Containers - Project 3

Table of contents

Overview

The challenge

  • Develop a system that can efficiently sort recyclables and transfer them to corresponding bins. Using Python create a program that can control robotic devices by connecting to a Raspberry Pi and using a remote environment (Quanser Labs).
  • Use the Q-Arm and the Q-Bot to transfer the containers in their appropiate bins.

Screenshot

Both Q-Bot and Q-Arm at Loading Position

Pic-1

Random Container Dispensed From the Tube

Pic-2

Q-Arm Loads the Containers Being Dropped at the Same Bin

Pic-3

Q-Bot Transfers the Containers & Engages the Hopper to Drop the Containers

Pic-5

My process

Built with

  • Python: Functions, conditionals, and loops.
  • Q-Arm and Q-Bot (ground robot) methods (common_libraries folder) used to move both robotic devices.
  • Ultrasonic sensor modules (common_libraries folder) provided to track the final bin distance.

Code snippets

Code to Determine the Bin Location of a Dispensed Container

  while (True):
      #Tracks the total mass of the containers
      total_mass = 0

      #Dispenses and loads the first container
      while (True):
          #Stores the information of the dispensed container (material, bin destination)
          container_list = []

          #Stores the bin ID of the first loaded container
          first_loaded_container = []

          #Checks if this is the first or second time a container is loaded to transfer 
          if (deposit_counter >= 1):

              #Stores the bin ID of the container which is not loaded
              first_target_bin = next_container[len(next_container)-1]
          else:

              #Dispenses a random container as this is the first time
              container_properties = my_table.container_properties(random.randint(1,6))
              container_list.append(container_properties)
              my_table.dispense_container()

              #Stores the bin ID from the container properties (material,mass,bin destination)
              for properties in container_list:
                  total_mass = properties[1]
                  first_target_bin = properties[2]

          print("First Target Bin:  ", first_target_bin)

          #Checks if dispensed container matches bin ID
          if (first_target_bin == "Bin01"):
              bin_ID = "Bin01"
          elif (first_target_bin == "Bin02"):
              bin_ID = "Bin02"
          elif (first_target_bin == "Bin03"):
              bin_ID = "Bin03"
          elif (first_target_bin == "Bin04"):
              bin_ID = "Bin04"

Q-Arm Code to Pick Up First Dispensed Container using Determined XYZ Coordinates

  #Loads the first container on the Q-Bot
  if (first_target_bin == bin_ID and total_mass < 90):
      #Appends the containers bin ID to compare with second dispensed container
      first_loaded_container.append(bin_ID) 
      arm.move_arm(0.68, 0.0, 0.2496)
      arm.control_gripper(45)
      arm.move_arm(0.2256, 0.0, 0.1898)
      arm.move_arm(-0.11, -0.300, 0.6)
      arm.move_arm(-0.11, -0.44, 0.39)
      arm.control_gripper(-45)
      arm.rotate_elbow(-33)
      arm.home()
      break
  else:
      break

Q-Bot Code to Transfer the Loaded Container using the Ultrasonic Sensor

  bot.activate_ultrasonic_sensor()

  #Checks if the loaded container matches bin ID and assigns a sensor value
  if (transfer_location == "Bin01"):
      bin_ID = "Bin01"
      #Value collected from ultrasonic reading which indicates when the Q-Bot should stop for each bin
      bin_target_location = [0.1]

  elif (transfer_location == "Bin02"):
      bin_ID = "Bin02"
      bin_target_location = [0.15]

  elif (transfer_location == "Bin03"):
      bin_ID = "Bin03"
      bin_target_location = [0.20]

  elif (transfer_location == "Bin04"):
      bin_ID = "Bin04"
      bin_target_location = [0.24, 0.25]

  if(transfer_location  == bin_ID):
      #While loop which runs until the target bin is located using ultrasonic sensor
      #Follows the yellow line until it arrives at target bin
      lines = 0
      while(lines < 2):
          lines, velocity = bot.follow_line(0.07)
          bot.forward_velocity(velocity)
          ultrasonic_reading = bot.read_ultrasonic_sensor(bin_ID)

          #Checks if assigned bin locations match the sensor values to stop the Q-Bot
          if(ultrasonic_reading in bin_target_location):

              #Stops the Q-Bot parallel to the bin
              bot.stop()
              bot.deactivate_ultrasonic_sensor()
              print("Reached target bin...")
              time.sleep(1)
              print("Deposit Container...")
              break
          else:
              #Moves Q-Bot forward until target location is determined
              bot.forward_speed(0.06)

What I learned

From this challenge I strengthened my knowledge of Python computation and scripting. Moreover, I learned more about python functions and also developed my abilities to resolve any bugs or issues within the program.

Owner
Mit Patel
Computer Engineering at McMaster University.
Mit Patel
Poupool is an overflow swimming pool control software

Poupool - The swimming pool controller Poupool is a swimming pool control software. It is based on Transitions, Pykka and Paho MQTT. The user interfac

Cyril Jaquier 8 Jul 18, 2022
Quasi-static control of the centroid of quadruped robot

Quasi-static control of quadruped robot   This is a demo of the quasi-static controller for the centroid of the quadruped robot. The Quadratic Program

Junwen Cui 21 Dec 12, 2022
Home Assistant custom component to help ev-chargers stay below peak hourly energy levels.

Peaqev ev-charging Peaqev ev-charging is an attempt of charging an ev without breaching a preset monthly max-peak energy level. In order for this inte

Magnus Eldén 35 Dec 24, 2022
A raspberrypi tools for python

raspberrypi-tools how to install: first clone this project: git clone https://github.com/Ardumine/rpi-tools.git then go to the folder cd rpi-tools and

1 Jan 04, 2022
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
Shotgrid Toolkit Engine for Gaffer

Shotgun toolkit engine for Gaffer Contact : Diego Garcia Huerta Overview Implementation of a shotgun engine for Gaffer. It supports the classic bootst

Diego Garcia Huerta 12 May 21, 2022
Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once

29 Dec 27, 2022
Home-Assistant MQTT bridge for Panasonic Comfort Cloud

Panasonic Comfort Cloud MQTT Bridge Home-Assistant MQTT bridge for Panasonic Comfort Cloud. Note: Currently this brige is a one evening prototype proj

Santtu Järvi 2 Jan 04, 2023
Workshop for student hackathons focused on IoT dev

Scenario: The Mutt Matcher (IoT version) According to the World Health Organization there are more than 200 million stray dogs worldwide. The American

Microsoft 15 Aug 10, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
Andreas Frisch 1 Jan 10, 2022
Tools and documentation to aid in modifying the ADI ADALM Pluto firmware

Pluto firmware modifications This repository contains tools and documentation to aid in modifying the ADI ADALM Pluto firmware. Extraction of the Plut

Daniel Estévez 28 Dec 21, 2022
New armachat based on Raspberry Pi PICO an Circuitpython code

Armachat-circuitpython New Armachat based on Raspberry Pi PICO an Circuitpython code Software working features: send message with header and store to

Peter Misenko 44 Dec 24, 2022
Micropython automatic watering

micropython-automatic-watering micropython automatic watering his code was developed to be used with nodemcu esp8266, but can be modified to work with

1 Nov 24, 2021
Simple Microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi

REST-light is a simple microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi. The main usage is an easy integration of 433M

Pascal Höhnel 1 Jan 09, 2022
A python script for Homeassistant that counts down the days to birthdays, anniversaries etc

Date Countdown A python script for Homeassistant that counts down the days to birthdays, anniversaries etc Important note I no longer use homeassistan

Marc Forth 21 Mar 12, 2022
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022
A python project based on a TV show Wheel of Fortune

Wheel-of-Fortune-using-Python Wheel of Fortune in python this game is the hands-on project in Python 3 Programming Specialization offered By Universit

Eszter Pai 1 Jan 03, 2022