A curated list of awesome game datasets, and tools to artificial intelligence in games

Overview

🎮 Awesome Game Datasets Awesome

In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that achieving its goals Russell et. al (2016).

Withal, Data Mining (DM) is the process of discovering patterns in data sets (or datasets) involving methods of machine learning, statistics, and database systems; DM focus on extract the information of datasets Han (2011).

This repository serves as a guide for anyone who wants to work with Artificial Intelligence or Data Mining applied in digital games! Here you will find a series of datasets, tools and materials available to build your application or dataset.

Contributing

Any suggestions or doubts, please open an "issue". If you want to contribute, read this and make a "pull request".


Contents


API

API is "a set of functions and procedures allowing the creation of applications that access the features or data of an operating system, application, or other service" (Google).


Artificial Intelligence

Mobile

Web


Books

  • Drachen, A. Mirza-Babaei, P. Nacke, L. (2018). Games user research. Oxford.
  • El-Nasr, S. Drachen, A. Canossa, A. (2013). Game analytics: maximizing the value of player data. Sprigner.
  • Han, J., Pei, J., Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
  • Hennig-Thurau, T. Houston, M. (2018). Entertainment science: data analytics and practical theory for movies, games, music and books. Springer.
  • Loh, A. Sheng, Y. Ifenthaler, D. (2015). Serious games analytics: methodologies for performance measurement, assessment, and improvement. Springer.
  • Russell, S. J., Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited.
  • Yannakakis, G. N., Togelius, J. (2018). Artificial intelligence and games. Springer.

Dataset

Related


Market Research


Miscellaneous


License

Creative Commons License

Owner
Leonardo Mauro
Data Scientist | Professor (Data Mining, Machine Learning, Business Intelligence).
Leonardo Mauro
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Code for the paper "Asymptotics of â„“2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021