LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

Overview

LiDAR Distillation

Paper | Model


LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection
Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jiwen Lu, Jie Zhou

Introduction

In this paper, we propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection. In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets. Moreover, as the LiDARs are upgraded to other product models with different beam amount, it becomes challenging to utilize the labeled data captured by previous versions’ high-resolution sensors. Despite the recent progress on domain adaptive 3D detection, most methods struggle to eliminate the beam-induced domain gap.

Model Zoo

Cross-dataset Adaptation

model method AP_BEV AP_3D
SECOND-IoU Direct transfer 32.91 17.24
SECOND-IoU ST3D 35.92 20.19
SECOND-IoU Ours 40.66 22.86
SECOND-IoU Ours (w / ST3D) 42.04 24.50
PV-RCNN Direct transfer 34.50 21.47
PV-RCNN ST3D 36.42 22.99
PV-RCNN Ours 43.31 25.63
PV-RCNN Ours (w / ST3D) 44.08 26.37
PointPillar Direct transfer 27.8 12.1
PointPillar ST3D 30.6 15.6
PointPillar Ours 40.23 19.12
PointPillar Ours (w / ST3D) 40.83 20.97

Results of cross-dataset adaptation from Waymo to nuScenes. The training Waymo data used in our work is version 1.0.

Single-dataset Adaptation

beams method AP_BEV AP_3D
32 Direct transfer 79.81 65.91
32 ST3D 71.29 57.57
32 Ours 82.22 70.15
32* Direct transfer 73.56 57.77
32* ST3D 67.08 53.30
32* Ours 79.47 66.96
16 Direct transfer 64.91 47.48
16 ST3D 57.58 42.40
16 Ours 74.32 59.87
16* Direct transfer 56.32 38.75
16* ST3D 55.63 37.02
16* Ours 70.43 55.24

Results of single-dataset adaptation on KITTI dataset with PointPillars (moderate difficulty). For SECOND-IoU and PV-RCNN, we find that it is easy to raise cuda error on low-beam data, which is may caused by the bug in spconv. Thus, we do not provide the model but you can still run these experiments with the yamls.

Installation

Please refer to INSTALL.md.

Getting Started

Please refer to GETTING_STARTED.md.

License

Our code is released under the Apache 2.0 license.

Acknowledgement

Our code is heavily based on OpenPCDet v0.2 and ST3D. Thanks OpenPCDet Development Team for their awesome codebase.

Citation

If you find this project useful in your research, please consider cite:

@article{wei2022lidar,
  title={LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection},
  author={Wei, Yi and Wei, Zibu and Rao, Yongming and Li, Jiaxin and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2203.14956},
  year={2022}
}
@misc{openpcdet2020,
    title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
    author={OpenPCDet Development Team},
    howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
    year={2020}
}
Owner
Yi Wei
Yi Wei
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022