LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

Overview

LiDAR Distillation

Paper | Model


LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection
Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jiwen Lu, Jie Zhou

Introduction

In this paper, we propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection. In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets. Moreover, as the LiDARs are upgraded to other product models with different beam amount, it becomes challenging to utilize the labeled data captured by previous versions’ high-resolution sensors. Despite the recent progress on domain adaptive 3D detection, most methods struggle to eliminate the beam-induced domain gap.

Model Zoo

Cross-dataset Adaptation

model method AP_BEV AP_3D
SECOND-IoU Direct transfer 32.91 17.24
SECOND-IoU ST3D 35.92 20.19
SECOND-IoU Ours 40.66 22.86
SECOND-IoU Ours (w / ST3D) 42.04 24.50
PV-RCNN Direct transfer 34.50 21.47
PV-RCNN ST3D 36.42 22.99
PV-RCNN Ours 43.31 25.63
PV-RCNN Ours (w / ST3D) 44.08 26.37
PointPillar Direct transfer 27.8 12.1
PointPillar ST3D 30.6 15.6
PointPillar Ours 40.23 19.12
PointPillar Ours (w / ST3D) 40.83 20.97

Results of cross-dataset adaptation from Waymo to nuScenes. The training Waymo data used in our work is version 1.0.

Single-dataset Adaptation

beams method AP_BEV AP_3D
32 Direct transfer 79.81 65.91
32 ST3D 71.29 57.57
32 Ours 82.22 70.15
32* Direct transfer 73.56 57.77
32* ST3D 67.08 53.30
32* Ours 79.47 66.96
16 Direct transfer 64.91 47.48
16 ST3D 57.58 42.40
16 Ours 74.32 59.87
16* Direct transfer 56.32 38.75
16* ST3D 55.63 37.02
16* Ours 70.43 55.24

Results of single-dataset adaptation on KITTI dataset with PointPillars (moderate difficulty). For SECOND-IoU and PV-RCNN, we find that it is easy to raise cuda error on low-beam data, which is may caused by the bug in spconv. Thus, we do not provide the model but you can still run these experiments with the yamls.

Installation

Please refer to INSTALL.md.

Getting Started

Please refer to GETTING_STARTED.md.

License

Our code is released under the Apache 2.0 license.

Acknowledgement

Our code is heavily based on OpenPCDet v0.2 and ST3D. Thanks OpenPCDet Development Team for their awesome codebase.

Citation

If you find this project useful in your research, please consider cite:

@article{wei2022lidar,
  title={LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection},
  author={Wei, Yi and Wei, Zibu and Rao, Yongming and Li, Jiaxin and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2203.14956},
  year={2022}
}
@misc{openpcdet2020,
    title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
    author={OpenPCDet Development Team},
    howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
    year={2020}
}
Owner
Yi Wei
Yi Wei
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022